《深圳市盐田区2023届中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《深圳市盐田区2023届中考联考数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1的负倒数是()AB-C3D32如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A5B4C3D23 “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将
2、800亿用科学记数法可表示为( )A0.81011B81010C80109D8001084截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A28B29C30D315如图,直线mn,直角三角板ABC的顶点A在直线m上,则的余角等于( )A19B38C42D526已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 + x1 x22 的值为( )A-6B- 3C3D67tan45的值等于()ABCD18一个数和它的倒数相等,则这个数是( )A1B0C1D1和09在一次体育测试中
3、,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )A0.3B0.4C0.5D0.610如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上反比例函数(x0)的图象经过顶点B,则k的值为A12B20C24D32二、填空题(本大题共6个小题,每小题3分,共18分)11如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为_ 12如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=_.13若点
4、M(k1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k1)x+k的图象不经过第 象限14在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示则当乙车到达A地时,甲车已在C地休息了_小时15如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_16如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点若AC=,AE
5、O=120,则FC的长度为_三、解答题(共8题,共72分)17(8分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由18(8分)如图:PCD是等腰直角三角形,DPC=90,APB=135求证:(1)PACBPD;(2)若AC=3,BD=1,求CD的长19(8分)如图所示,点C在线段AB上,AC = 8 cm,CB
6、= 6 cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.20(8分)如图,在ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与O相交于点F若的长为,则图中阴影部分的面积为_21(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF(1)求证:四边形ACDF是平行四边形;(
7、2)当CF平分BCD时,写出BC与CD的数量关系,并说明理由22(10分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明AEFAGF;从而发现并证明了EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F在边BC上,且EAF=45,若BE=3,EF=5,求CF的长23(12分)
8、已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(1,1),B(1,1),C(1,1),D(1,1).(1)在,中,正方形ABCD的“关联点”有_;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.24班级的课外活动,学生们都很积极.梁老师
9、在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了_名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据倒数的定义,互为倒数的两数乘积为1,2=1再求出2的相反数即可解答【详解】根据倒数的定义得:2=1因此的负倒数是-2故选D【点睛】本
10、题考查了倒数,解题的关键是掌握倒数的概念.2、C【解析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:将800亿用科学记数法表示为:81故选:B【点睛】此题考查科学记
11、数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、C【解析】根据中位数的定义即可解答【详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:30,则这组数据的中位数是30;故本题答案为:C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5、D【解析】试题分析:过C作CD直线m,mn,CDmn,DCA=FAC=52,=DCB,ACB=90,=9052=38,则a的余角是52故选D考
12、点:平行线的性质;余角和补角6、B【解析】根据根与系数的关系得到x1+x2=1,x1x2=1,再把x12x2+x1x22变形为x1x2(x1+x2),然后利用整体代入的方法计算即可【详解】根据题意得:x1+x2=1,x1x2=1,所以原式=x1x2(x1+x2)=11=1故选B【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1x27、D【解析】根据特殊角三角函数值,可得答案【详解】解:tan45=1,故选D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键8、C【解析】根据倒数的定义即可求解.【详解】的倒数等于
13、它本身,故符合题意.故选:.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9、C【解析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=0.1故选C【点睛】本题考查了频数与频率,频率=10、D【解析】如图,过点C作CDx轴于点D,点C的坐标为(3,4),OD=3,CD=4.根据勾股定理,得:OC=5.四边形OABC是菱形,点B的坐标为(8,4).点B在反比例函数(x0)的图象上,.故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解
14、析】易得:ABMOCM,利用相似三角形的相似比可得出小明的影长【详解】解:根据题意,易得MBAMCO,根据相似三角形的性质可知 ,即,解得AM=1m则小明的影长为1米故答案是:1【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长12、1【解析】首先连接BE,由题意易得BF=CF,ACOBKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在RtOBF中,即可求得tanBOF的值,继而求得答案【详解】如图,连接BE,四边形BCEK是正方形,KF=CF=CK,BF=BE,CK=BE,BECK,BF=CF,根据题意得
15、:ACBK,ACOBKO,KO:CO=BK:AC=1:3,KO:KF=1:1,KO=OF=CF=BF,在RtPBF中,tanBOF=1,AOD=BOF,tanAOD=1故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用13、一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案点M(k1,k+1)关于y轴的对称点在第四象限内, 点M(k1,k+1)位于第三象限,k10且k+10, 解得:k1,y=(k1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数
16、的性质14、2.1【解析】根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题【详解】由题意可得,甲车到达C地用时4个小时,乙车的速度为:200(3.11)=80km/h,乙车到达A地用时为:(200+240)80+1=6.1(小时),当乙车到达A地时,甲车已在C地休息了:6.14=2.1(小时),故答案为:2.1【点睛】本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答15、 【解析】如图,过点P作PHOB于点H,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,9=m2,且m0,解得,m=3.PH=O
17、H=3.PAB是等边三角形,PAH=60.根据锐角三角函数,得AH=.OB=3+SPOB=OBPH=.16、1【解析】先根据矩形的性质,推理得到OF=CF,再根据RtBOF求得OF的长,即可得到CF的长【详解】解:EFBD,AEO=120,EDO=30,DEO=60,四边形ABCD是矩形,OBF=OCF=30,BFO=60,FOC=60-30=30,OF=CF,又RtBOF中,BO=BD=AC=,OF=tan30BO=1,CF=1,故答案为:1【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分三、解答题(共8题,共72分)17、(1);四边形是菱形,理
18、由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】(1)先确定出点A,B坐标,再利用待定系数法即可得出结论;先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论【详解】(1)如图1,反比例函数为,当时,当时,设直线的解析式为, , ,直线的解析式为;四边形是菱形,理由如下:如图2,由知,轴,点是线段的中点,当时,由得,由得,四边形为平行四边形,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时, ,.【点睛】此题是反比例
19、函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键18、(1)见解析;(2).【解析】(1)由PCD是等腰直角三角形,DPC=90,APB=135,可得PAB=PBD,BPD=PAC,从而即可证明;(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解【详解】证明:(1)PCD是等腰直角三角形,DPC=90,APB=135,APC+BPD=45,又PAB+PBA=45,PBA+PBD=45,PAB=PBD,BPD=PAC,PCA=PDB,PACBPD;(2),PC=PD,AC=3,BD=1PC=
20、PD=,CD=【点睛】本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法19、(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=a(cm);理由详见解析(3)b(cm)【解析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可(2)据题意画出图形即可得出答案(3)据题意画出图形即可得出答案【详解】(1)如图AC8cm,CB6cm,ABACCB8614cm,又点M、N分别是AC、BC的中点,MCAC,CNBC,MNACBC( ACBC)AB7cm答
21、:MN的长为7cm(2)若C为线段AB上任一点,满足ACCBacm,其它条件不变,则MNcm,理由是:点M、N分别是AC、BC的中点,MCAC,CNBC,ACCBacm,MNACBC(ACBC)cm(3)解:如图,点M、N分别是AC、BC的中点,MCAC,CNBC,ACCBbcm,MNACBC(ACBC)cm考点:两点间的距离20、S阴影2【解析】由切线的性质和平行四边形的性质得到BAAC,ACB=B=45,DAC=ACB=45=FAE,根据弧长公式求出弧长,得到半径,即可求出结果.【详解】如图,连接AC,CD与A相切,CDAC,在平行四边形ABCD中,AB=DC,ABCDBC,BAAC,AB
22、=AC,ACB=B=45,ADBC,FAE=B=45,DAC=ACB=45=FAE,的长度为解得R=2,S阴=SACD-S扇形=【点睛】此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.21、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定FAECDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD详解:(1)四边形ABCD是矩形,ABCD,FAE
23、=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:CF平分BCD,DCE=45,CDE=90,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的22、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90至ADG,可使AB
24、与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=90,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGEAF=9015=1
25、5,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,FG2=FC2+CG2=BE2+FC2;又EAF=15,而EAG=90,GAF=9015,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE2=5232=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难
26、度较大,题目所给例题的思路,为解决此题做了较好的铺垫23、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).【解析】(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:如图3中,MN与小Q相切于点F,求出此时点Q的横坐标;M如图4中,落在大Q上,求出点Q的横坐标即可解
27、决问题;【详解】(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD的“关联点”为P2,P3;(2)作正方形ABCD的内切圆和外接圆,OF1,.E是正方形ABCD的“关联点”,E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),点E在直线上,点E在线段FG上.分别作FFx轴,GGx轴,OF1,.根据对称性,可以得出.或.(3)、N(0,1),ON1.OMN60.线段MN上的每一个点都是正方形ABCD的“关联点”,MN与小Q相切于点F,如图3中,QF1,OMN60,.,.M落在大Q上,如图4中,.综上:.【点睛】本题考查一次
28、函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.24、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.