江西省赣州市定南县2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc

上传人:lil****205 文档编号:88309276 上传时间:2023-04-25 格式:DOC 页数:21 大小:830.50KB
返回 下载 相关 举报
江西省赣州市定南县2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共21页
江西省赣州市定南县2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《江西省赣州市定南县2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省赣州市定南县2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,四边形ABCD中,AB=CD,ADBC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )ABCD32在同一直角坐标系中,二次函数y=

2、x2与反比例函数y=(x0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令=x1+x2+x3,则的值为()A1 Bm Cm2 D3若关于,的二元一次方程组的解也是二元一次方程的解,则的值为ABCD4如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)B(3,1)C(2,2)D(4,2)5十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二

3、,其中80万亿用科学记数法表示为( )A81012B81013C81014D0.810136下列运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b27下列计算正确的是( )Aa+a=a4B(-a2)3=a6C(a+1)2=a2+1D8ab2(-2ab)=-4b8某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A5.035106B50.35105C5.035106D5.0351059如图,二次函数y=ax1+bx+c(a0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC则下列结论:abc0;9

4、a+3b+c0;c1;关于x的方程ax1+bx+c=0(a0)有一个根为;抛物线上有两点P(x1,y1)和Q(x1,y1),若x11x1,且x1+x14,则y1y1其中正确的结论有()A1个B3个C4个D5个10如果,那么( )AB CD11抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x212如图,点O为平面直角坐标系的原点,点A在x轴上,OAB是边长为4的等边三角形,以O为旋转中心,将OAB按顺时针方向旋转60,得到OAB,那么点A的坐标为()A(2,2)B(2,4)C(2,2)D(2,2)二、填空题:(本大题共6个小题,每小题4分,共24分)13鼓励科技创新、技术

5、发明,北京市20122017年专利授权量如图所示根据统计图中提供信息,预估2018年北京市专利授权量约_件,你的预估理由是_14用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_15如图,抛物线yax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线MPN上移动,它们的坐标分别为M(1,4)、P(3,4)、N(3,1)若在抛物线移动过程中,点A横坐标的最小值为3,则ab+c的最小值是_16_.17图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程

6、_.18在平面直角坐标系中,P的圆心是(2,a)(a2),半径为2,函数y=x的图象被P截得的弦AB的长为,则a的值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为 ;(2)补全条形统计图(3)扇形统计图中,类所在扇形的圆心角的度数为 ;(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多

7、少名. 20(6分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3)过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tanOAC=(1)求反比例函数y=和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求BMC的度数21(6分)如图,菱形中,分别是边的中点求证:.22(8分)计算:|4sin30|+()123(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问

8、题:请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.24(10分)已知PA与O相切于点A,B、C是O上的两点(1)如图,PB与O相切于点B,AC是O的直径若BAC25;求P的大小(2)如图,PB与O相交于点D,且PDDB,若ACB90,求P的大小25(10分)如图,以AB边为直径的O经过点P,C是O上一点,连结PC交AB于点E,且ACP=60,PA=PD试判断PD与O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE

9、CP的值26(12分)先化简,再求值:,其中27(12分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶(1)由定义知,取AB中点N,连结MN,MN与AB的关系是_(2)抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_(3)抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说

10、明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】四边形AECD是平行四边形,AE=CD,AB=BE=CD=3,AB=BE=AE,ABE是等边三角形,B=60,的弧长=.故选B.2、D【解析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.3、B【解析】将k看做已知数求出用k表示的x与y,代入2x+3y

11、=6中计算即可得到k的值【详解】解:,得:,即,将代入得:,即,将,代入得:,解得:故选:【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值4、A【解析】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A5、B【解析】80万亿用科学记数法表示为81故选B点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点

12、移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.6、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键7、D【解析】各项计算得到结果,即可作出判断【详解】A、原式=2a2,不符合题意;B、原式=-a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;

13、D、原式=-4b,符合题意,故选:D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键8、A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035106,故选A考点:科学记数法表示较小的数9、D【解析】根据抛物线的图象与系数的关系即可求出答案【详解】解:由抛物线的开口可知:a0,由抛物线与y轴的交点可知:c0,由抛物线的对称轴可知:0,b0,abc0,故正确;令x=3,y0,9a+3b+c0,故正确;OA=OC1,c1,故正确;对称轴为直线x=1,=1,b=4aOA=OC=c,当x=c时,y=0,ac1bc+c=0,acb+1=0,ac+4a+1=0,c

14、=,设关于x的方程ax1+bx+c=0(a0)有一个根为x,xc=4,x=c+4=,故正确;x11x1,P、Q两点分布在对称轴的两侧,1x1(x11)=1x1x1+1=4(x1+x1)0,即x1到对称轴的距离小于x1到对称轴的距离,y1y1,故正确故选D【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定本题属于中等题型10、B【解析】试题分析:根据二次根式的性质,由此可知2-a0,解得a2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.11、B【解

15、析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键12、D【解析】分析:作BCx轴于C,如图,根据等边三角形的性质得则易得A点坐标和O点坐标,再利用勾股定理计算出然后根据第二象限点的坐标特征可写出B点坐标;由旋转的性质得则点A与点B重合,于是可得点A的坐标详解:作BCx轴于C,如图,OAB是边长为4的等边三角形 A点坐标为(4,0),O点坐标为(0,0),在RtBOC中, B点坐标为 OAB按顺时针方向旋转,得到OAB, 点A与点B重合,即点A的坐标为 故选D.点睛:考查图形的旋转,

16、等边三角形的性质.求解时,注意等边三角形三线合一的性质.二、填空题:(本大题共6个小题,每小题4分,共24分)13、113407, 北京市近两年的专利授权量平均每年增加6458.5件. 【解析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【详解】解:北京市近两年的专利授权量平均每年增加:(件),预估2018年北京市专利授权量约为1069486458.5113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件【点睛】此题考查统计图的意义,解题的关键在于看懂图中数据.14、【解析】试题分析:,解得r=考点:弧长的计算15、1【解

17、析】由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解【详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变16、

18、1【解析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可【详解】解:原式=2=1故答案为1【点睛】本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键17、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位【解析】变换图形2,可先旋转,然后平移与图2拼成一个矩形【详解】先将图2以点A为旋转中心逆时针旋转90,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形故答案为:先将图2以点A为旋转中心逆时针旋转90,再将旋转后的图形向左平移5个单位【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图

19、形全等18、2+【解析】试题分析:过P点作PEAB于E,过P点作PCx轴于C,交AB于D,连接PAPEAB,AB=2,半径为2, AE=AB=,PA=2, 根据勾股定理得:PE=1,点A在直线y=x上,AOC=45,DCO=90, ODC=45,OCD是等腰直角三角形, OC=CD=2, PDE=ODC=45,DPE=PDE=45, DE=PE=1, PD=P的圆心是(2,a), a=PD+DC=2+【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中本题还需要注意的一个隐含条件就是:直线y

20、=x或直线y=-x与x轴所形成的锐角为45,这一个条件的应用也是很重要的三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)300;(2)见解析;(3)108;(4)约有840名.【解析】(1)根据A种类人数及其占总人数百分比可得答案;(2)用总人数乘以B的百分比得出其人数,即可补全条形图;(3)用360乘以C类人数占总人数的比例可得;(4)总人数乘以C、D两类人数占样本的比例可得答案【详解】解:(1)本次被调查的学生的人数为6923%=300(人),故答案为:300;(2)喜欢B类校本课程的人数为30020%=60(人),补全条形图如下:(3)扇形统

21、计图中,C类所在扇形的圆心角的度数为360=108,故答案为:108;(4)2000=840,估计该校喜爱C,D两类校本课程的学生共有840名【点睛】本题考查条形统计图、扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解题关键条形统计图能清楚地表示出每个项目的数据20、(1),(2)ACCD(3)BMC=41【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;(2)由条件可证明OACBCD,再由角的和差可求得OAC+BCA=90,可证得ACCD;(3)连接AD,可证得四边形AEBD为平行四边形,

22、可得出ACD为等腰直角三角形,则可求得答案本题解析:(1)A(1,0),OA=1tanOAC=,解得OC=2,C(0,2),BD=OC=2,B(0,3),BDx轴,D(2,3),m=23=6,y=,设直线AC关系式为y=kx+b,过A(1,0),C(0,2),解得,y=x2;(2)B(0,3),C(0,2),BC=1=OA,在OAC和BCD中,OACBCD(SAS),AC=CD,OAC=BCD,BCD+BCA=OAC+BCA=90,ACCD;(3)BMC=41如图,连接AD,AE=OC,BD=OC,AE=BD,BDx轴,四边形AEBD为平行四边形,ADBM,BMC=DAC,OACBCD,AC=

23、CD,ACCD,ACD为等腰直角三角形,BMC=DAC=4121、证明见解析.【解析】根据菱形的性质,先证明ABEADF,即可得解.【详解】在菱形ABCD中,ABBCCDAD,BD.点E,F分别是BC,CD边的中点,BEBC,DFCD,BEDF.ABEADF,AEAF.22、41【解析】先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式3(2)123+21241【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.23、(1)答案见解析;(2).【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人

24、数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)1025%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4=1(人),八年级获一等奖人数:4=1(人), 九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1 、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则

25、所选出的两人中既有七年级又有九年级同学的概率P=.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.24、(1)P=50;(2)P45.【解析】(1)连接OB,根据切线长定理得到PA=PB,PAO=PBO=90,根据三角形内角和定理计算即可;(2)连接AB、AD,根据圆周角定理得到ADB=90,根据切线的性质得到ABPA,根据等腰直角三角形的性质解答【详解】解:(1)如图,连接OBPA、PB与O相切于A、B点,PAPB,PAOPBO90PABPBA,BAC25,PBAPAB90一BAC65P180-PABPBA50;(2)如图,连接AB、AD,AC

26、B90,AB是的直径,ADB90PDDB,PAABPA与O相切于A点ABPA,PABP45.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键25、(1)PD是O的切线证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得AOP=2ACP=120,然后计算出PAD和D的度数,进而可得OPD=90,从而证明PD是O的切线;(2)连结BC,首先求出CAB=ABC=APC=45,然后可得AC长,再证明CAECPA,进而可得,然后可得CECP的值试题解析:(1)如图,PD是O的切线证明如下:连结OP,ACP=60,AOP=120,OA=OP,OA

27、P=OPA=30,PA=PD,PAO=D=30,OPD=90,PD是O的切线(2)连结BC,AB是O的直径,ACB=90,又C为弧AB的中点,CAB=ABC=APC=45,AB=4,AC=Absin45=C=C,CAB=APC,CAECPA,CPCE=CA2=()2=1考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型26、 ;【解析】先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后代入求值【详解】解:原式=把代入得:原式=【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分27、(1)MN与AB的关系是

28、:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁