《湖南省长沙市开福区周南中学2023年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省长沙市开福区周南中学2023年中考数学模拟预测题含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球学生可根
2、据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A选科目E的有5人B选科目A的扇形圆心角是120C选科目D的人数占体育社团人数的D据此估计全校1000名八年级同学,选择科目B的有140人2如图,已知是的角平分线,是的垂直平分线,则的长为( )A6B5C4D3已知点,为是反比例函数上一点,当时,m的取值范围是( )ABCD4如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD5下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D
3、(a2)3a66- 的绝对值是( )A-4BC4D0.47如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H给出如下几个结论:AEDDFB;S四边形BCDG=;若AF=2DF,则BG=6GF;CG与BD一定不垂直;BGE的大小为定值其中正确的结论个数为( )A4B3C2D18某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )A8米B米C米D米9方程x2+2x3=0的解是()Ax1=1,x2=3 Bx1=1,x2=3Cx1=1,x2=
4、3 Dx1=1,x2=310如图,边长为2a的等边ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60得到BN,连接HN则在点M运动过程中,线段HN长度的最小值是( )ABaCD11某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A5.035106B50.35105C5.035106D5.03510512如图,BC平分ABE,ABCD,E是CD上一点,若C=35,则BED的度数为()A70B65C62D60二、填空题:(本大题共6个小题,每小题4分,共24分)13若不等式组有解,则m的取值范围是_14如图,在RtABC中,B=90,A=45
5、,BC=4,以BC为直径的O与AC相交于点O,则阴影部分的面积为_15如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是_16如果不等式组的解集是x2,那么m的取值范围是_17如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:.使得斜边ABb,ACa作法:如图.(1)作射线AP,截取线段ABb;(2)以AB为直径,作O;(3)以点A为圆心,a的长为半径作弧交O于点C;(4)连接AC、CB.即为所求作的直角三角形.请回答:该尺规作图的依据是_.18如图,在ABC中,
6、BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示甲的速度是_米/分钟;当20t30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为3
7、60米,则乙从景点B步行到景点C的速度是多少?20(6分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究下面是小东的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012336说明:补全表格时相关数据保留一位小数建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:直接写出周长C的取值范围是_21(6分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰
8、塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG6米,GC53米请你根据以上数据,计算舍利塔的高度AB22(8分)如图,在中,ABAC,点D是BC的中点,DEAB于点E,DFAC于点F. (1)EDB_(用含的式子表示)(2)作射线DM与边AB交于点M,射线
9、DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形;写出DM与DN的数量关系并证明;用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.23(8分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:A二维码过闸 B现金购票 C市名卡过闸 D银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).24(10分)已知甲、乙两地相距90k
10、m,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程sA、sB;(2)在A出发后几小时,两人相距15km?25(10分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的
11、坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由26(12分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值
12、范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本27(12分)如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延长线上,且CBF=CAB(1)求证:直线BF是O的切线;(2)若AB=5,sinCBF=,求BC和BF的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】A选项先求出调
13、查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用360判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定【详解】解:调查的学生人数为:1224%=50(人),选科目E的人数为:5010%=5(人),故A选项正确,选科目A的人数为50(7+12+10+5)=16人,选科目A的扇形圆心角是360=115.2,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000=140人,故D选项正确;故选B【点睛】本题主要考查了条形统计图及扇形统计
14、图,解题的关键是读懂统计图,从统计图中找到准确信息2、D【解析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.3、A【解析】直接把n的值代入求出
15、m的取值范围【详解】解:点P(m,n),为是反比例函数y=-图象上一点,当-1n-1时,n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1m1故选A【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键4、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B
16、【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积5、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键6、B【解析】直接用绝对值的意义求解.【详解】的绝对值是故选B【点睛】此题是绝对值题,掌握绝对值的意义是解本
17、题的关键7、B【解析】试题分析:ABCD为菱形,AB=AD,AB=BD,ABD为等边三角形,A=BDF=60,又AE=DF,AD=BD,AEDDFB,故本选项正确;BGE=BDG+DBF=BDG+GDF=60=BCD,即BGD+BCD=180,点B、C、D、G四点共圆,BGC=BDC=60,DGC=DBC=60,BGC=DGC=60,过点C作CMGB于M,CNGD于N(如图1),则CBMCDN(AAS),S四边形BCDG=S四边形CMGN,S四边形CMGN=2SCMG,CGM=60,GM=CG,CM=CG,S四边形CMGN=2SCMG=2CGCG=,故本选项错误;过点F作FPAE于P点(如图2
18、),AF=2FD,FP:AE=DF:DA=1:3,AE=DF,AB=AD,BE=2AE,FP:BE=FP:AE=1:6,FPAE,PFBE,FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;当点E,F分别是AB,AD中点时(如图3),由(1)知,ABD,BDC为等边三角形,点E,F分别是AB,AD中点,BDE=DBG=30,DG=BG,在GDC与BGC中,DG=BG,CG=CG,CD=CB,GDCBGC,DCG=BCG,CHBD,即CGBD,故本选项错误;BGE=BDG+DBF=BDG+GDF=60,为定值,故本选项正确;综上所述,正确的结论有,共3个,故选B考点:四边形综合题8、
19、C【解析】此题考查的是解直角三角形如图:AC=4,ACBC,梯子的倾斜角(梯子与地面的夹角)不能60ABC60,最大角为60即梯子的长至少为米,故选C.9、B【解析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程【详解】x2+2x-3=0,即(x+3)(x-1)=0,x1=1,x2=3故选:B【点睛】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法本题运用的是因式分解法10、A【解析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,
20、然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=2a=a,MG=CG=a=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质
21、,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点11、A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035106,故选A考点:科学记数法表示较小的数12、A【解析】由ABCD,根据两直线平行,内错角相等,即可求得ABC的度数,又由BC平分ABE,即可求得ABE的度数,继而求得答案【详解】ABCD,C=35,ABC=C=35,BC平分ABE,ABE=2ABC=70,ABCD,BED=ABE=70.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】
22、分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围解答:解:由1-x2得x-1又xm根据同大取大的原则可知:若不等式组的解集为x-1时,则m-1若不等式组的解集为xm时,则m-1故填m-1或m-1点评:本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围14、6【解析】连接、,根据阴影部分的面积计算.【详解】连接、,为的直径,阴影部分的面积.故答案为.【点睛】本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关键.15、【解析】解:连接AG,由旋转变换的性质可知,ABG
23、=CBE,BA=BG=5,BC=BE,由勾股定理得,CG=4,DG=DCCG=1,则AG=, ,ABG=CBE,ABGCBE,解得,CE=,故答案为【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键16、m1【解析】分析:先解第一个不等式,再根据不等式组的解集是x1,从而得出关于m的不等式,解不等式即可详解:解第一个不等式得,x1,不等式组的解集是x1,m1,故答案为m1点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围求不等式的公共解,要遵循以下原则:
24、同大取较大,同小取较小,大小小大中间找,大大小小解不了17、等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】根据圆周角定理可判断ABC为直角三角形【详解】根据作图得AB为直径,则利用圆周角定理可判断ACB=90,从而得到ABC满足条件故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了圆周角定理18、1【解析】设HG=x,根据相似三角形的性质用x表示出KD,
25、根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可【详解】解:设HG=x四边形EFGH是矩形,HGBC,AHGABC,=,即=,解得:KD=6x,则矩形EFGH的面积=x(6x)=x2+6x=(x4)2+1,则矩形EFGH的面积最大值为1故答案为1【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)60;(2)s10t6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟【解析】(1)观察图像
26、得出路程和时间,即可解决问题(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可【详解】(1)甲的速度为60米/分钟(2)当20t 1时,设s=mtn,由题意得:,解得:,所以s=10t6000;(3)当20t 1时,60t=10t6000,解得:t=25,2520=5;当1t 60时,60t=100,解得:t=50,5020=1综上所述:乙出发5分钟和1分钟时与甲在途中相遇(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400100(
27、9060) x=360解得:x=2答:乙从景点B步行到景点C的速度是2米/分钟【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型20、(1)(2)详见解析;(3).【解析】(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得OBC周长C的取值范围【详解】经过测量,时,y值为根据题意,画出函数图象如下图:根据图象,可以发现,y的取值范围为:,故答案为.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,
28、让学生进一步了解函数的意义21、55米【解析】由题意可知EDCEBA,FHCFBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.【详解】EDCEBA,FHCFBA,,即,AC=106米,又 ,AB=55米.答:舍利塔的高度AB为55米【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题22、(1);(2)(2)见解析;DMDN,理由见解析;数量关系:【解析】(1)先利用等腰三角形的性质和三角形内角和得到B=C=90,然后利用互余可得到EDB=;(2)如图,利用EDF=
29、1802画图;先利用等腰三角形的性质得到DA平分BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到EDF=1802,所以MDE=NDF,然后证明MDENDF得到DM=DN;先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsin,从而有BM+CN=BCsin【详解】(1)AB=AC,B=C(180A)=90DEAB,DEB=90,EDB=90B=90(90)=故答案为:;(2)如图:DM=DN理由如下:AB=AC,BD=DC,DA平分BACDEAB于点E,DFAC于点F,DE=DF,MED=NFD=90
30、A=2,EDF=1802MDN=1802,MDE=NDF在MDE和NDF中,MDENDF,DM=DN;数量关系:BM+CN=BCsin证明思路为:先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,所以BM+CN=BE+EM+CFFN=2BE,接着在RtBDE可得BE=BDsin,从而有BM+CN=BCsin【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质23、 (1)600人(2)【解析】(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;(2
31、)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率【详解】(1)(人),最喜欢方式A的有600人(2)列表法: ABCAA,AA,BA,CBB,AB,BB,CCC,AC,BC,C树状法:(同一种购票方式)【点睛】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小24、(1)sA45t45,sB20t;(2)在A出发后小时或小时,两人相距15km【解析】(1)根据函数图象中的数据可以分别求得s与t的函数关系式;(2)
32、根据(1)中的函数解析式可以解答本题【详解】解:(1)设sA与t的函数关系式为sAkt+b,得,即sA与t的函数关系式为sA45t45, 设sB与t的函数关系式为sBat,603a,得a20,即sB与t的函数关系式为sB20t;(2)|45t4520t|15,解得,t1,t2,即在A出发后小时或小时,两人相距15km【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键25、(1)A(3,0),y=x+;(2)D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0
33、),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当
34、点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运
35、动时,如图,即0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:
36、待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度26、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加【解析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:pq,进而得出x的取值范围;(3)利用顶点式求出函数最值得出答案;利用二次函数的增减性得出答案即可【详解】(1)设q=kx+b(k,b为常数且k0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,q与x的函数关系式为:q=x+14;(2)当产量小于或等于市场需求量时,有pq,x+8x+14
37、,解得:x4,又2x10,2x4;(3)当产量大于市场需求量时,可得4x10,由题意得:厂家获得的利润是:y=qx2p=x2+13x16=(x)2;当x时,y随x的增加而增加又产量大于市场需求量时,有4x10,当4x时,厂家获得的利润y随销售价格x的上涨而增加【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键27、(1)证明见解析;(2)BC=;. 【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明ABF=90(2)利用已知条件证得AGCABF,利用比例式求得线段的长即可(1)证明:连接AE,AB是O的直径,AEB=90,1+2=90AB=AC,1=CABCBF=CAB,1=CBFCBF+2=90即ABF=90AB是O的直径,直线BF是O的切线(2)解:过点C作CGAB于GsinCBF=,1=CBF,sin1=,在RtAEB中,AEB=90,AB=5,BE=ABsin1=,AB=AC,AEB=90,BC=2BE=2,在RtABE中,由勾股定理得AE=2,sin2=,cos2=,在RtCBG中,可求得GC=4,GB=2,AG=3,GCBF,AGCABF,=BF=