《浙江省杭州市下沙区重点达标名校2023届十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市下沙区重点达标名校2023届十校联考最后数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列图形中,主视图为的是()ABCD2的绝对值是( )ABCD3将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+34下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )ABCD5下列计算正确的是()Aa2+a2=a4Ba5a2=a7C(a2)3=a5D2a2a2=26“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相
3、等的实数根苏科版数学九年级(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无实数根7下列各式计算正确的是( )Aa22a33a5Baa2a3Ca6a2a3D(a2)3a58拒绝“餐桌浪费”,刻不容缓节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年“”这个数据用科学记数法表示为( )A B C D.9如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60刻度线的外端点,连接CD交AB于点E,则CEB的度数为( )A60B65C70D7510如图,扇形AOB中,O
4、A=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()ABCD11在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A27B51C69D7212已知:二次函数y=ax2+bx+c(a1)的图象如图所示,下列结论中:abc1;b+2a=1;a-b1其中正确的项有( )A2个B3个C4个D5个二、填空题:(本大题共6个小题,每小题4分,共24分)13同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 14如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若D为OB
5、的中点,ADO的面积为3,则k的值为_15若代数式在实数范围内有意义,则实数x的取值范围为_16使得分式值为零的x的值是_;17如图,直线a、b相交于点O,若1=30,则2=_18如图,AB是O的直径,AC与O相切于点A,连接OC交O于D,连接BD,若C=40,则B=_度三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,作轴于E点求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围20(6分)如图,中,于
6、,点分别是的中点.(1)求证:四边形是菱形(2)如果,求四边形的面积21(6分)如图,在中,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径求证:与相切;当时,求的半径22(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?23(8分)张老师在黑板上布置了一道题:计
7、算:2(x+1)2(4x5),求当x和x时的值小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由24(10分)如图,已知点D在ABC的外部,ADBC,点E在边AB上,ABADBCAE求证:BACAED;在边AC取一点F,如果AFED,求证:25(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元今年年初,“共享单车”试点投放在某市中心城区正式启动投放A,B两种款型的单车共100辆,总价值36800元试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的
8、认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?26(12分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把BAD沿直线BD折叠,点A的对应点为A(1)若点A落在矩形的对角线OB上时,OA的长= ;(2)若点A落在边AB的垂直平分线上时,求点D的坐标;(3)若点A落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可)27(12分)如图,AD、BC相交于点O,ADBC,CD90求证:ACBB
9、DA;若ABC36,求CAO度数参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置2、C【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决【详解】在数轴上,点到原点的距离是,所以,的绝对值是,故选C【点睛】错
10、因分析容易题,失分原因:未掌握绝对值的概念.3、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键4、D【解析】根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义
11、是解决问题的关键.5、B【解析】根据整式的加减乘除乘方运算法则逐一运算即可。【详解】A. ,故A选项错误。 B. ,故B选项正确。C.,故C选项错误。 D. ,故D选项错误。故答案选B.【点睛】本题考查整式加减乘除运算法则,只需熟记法则与公式即可。6、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.7、B【解析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选
12、项分析判断利用排除法求解【详解】A.a2与2a3不是同类项,故A不正确;B.aa2a3,正确;C原式a4,故C不正确;D原式a6,故D不正确;故选:B【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.8、C【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】32400000=3.24107元故选C【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键9、D【解析】解:连接ODAOD=60,ACD=30.CEB是ACE的外角,CEBACD+CAO=30+45
13、=75故选:D10、D【解析】连接OC,过点A作ADCD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知AOC是等边三角形,可得AOC=BOC=60,故ACO与BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OAsin60=2=,因此可求得S阴影=S扇形AOB2SAOC=22=2故选D点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键11、D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+1列出三个数的和的方程,再根据选项解出x,看是否存在解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+
14、7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2故任意圈出一竖列上相邻的三个数的和不可能是3故选D“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解12、B【解析】根据二次函数的图象与性质判断即可【详解】由抛物线开口向上知: a1; 抛物线与y轴的负半轴相交知c1; 对称轴在y轴的右侧知:b1;所以:abc1,故错误;对称轴为直线x=-1,,即b=2a,所以b-2a=1.故错误;由抛物线的性质可知,当x=-1时,y有最小值,即a-b+c(),即abm(am+
15、b)(m1),故正确;因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故正确;由图像可得,当x=2时,y1,即: 4a+2b+c1,故正确.故正确选项有,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=故答案为考点:列表法与树状图法14、1【解析】过点B作BEx轴于
16、点E,根据D为OB的中点可知CD是OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=,再由ADO的面积为1求出k的值即可得出结论解:如图所示,过点B作BEx轴于点E,D为OB的中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1,ADOC=3,()x=3,解得k=1,故答案为115、x1【解析】根据二次根式有意义的条件可求出x的取值范围【详解】由题意可知:1x0,x1故答案为:x1【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可16、2【解析】根据分式的性质,要使分式有意义,则必须分母不能
17、为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则 ,即 要使分式为零,则 ,即 综上可得 故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.17、30【解析】因1和2是邻补角,且1=30,由邻补角的定义可得2=1801=18030=150解:1+2=180,又1=30,2=15018、25【解析】AC是O的切线,OAC=90,C=40,AOC=50,OB=OD,ABD=BDO,ABD+BDO=AOC,ABD=25,故答案为:25.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1),;(2)8;(3)或【
18、解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解试题解析:解:(1)OB=4,OE=2,BE=2+4=1CEx轴于点E,tanABO=,OA=2,CE=3,点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(2,3)一次函数y=ax+b的图象与x,y轴交于B,A两点,解得:故直线AB的解析式为反比例函数的图象过C,3=,k=1,该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得
19、:,可得交点D的坐标为(1,1),则BOD的面积=412=2,BOC的面积=432=1,故OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x2或0x1点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点20、 (1)证明见解析;(2).【解析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据
20、等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S【详解】解:(1)ADBC,点E、F分别是AB、AC的中点,RtABD中,DE=AB=AE,RtACD中,DF=AC=AF,又AB=AC,点E、F分别是AB、AC的中点,AE=AF,AE=AF=DE=DF,四边形AEDF是菱形;(2)如图,AB=AC=BC=10,EF=5,AD=5,菱形AEDF的面积S=EFAD55【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半21、 (1)证明见解析;(2)【解析】(1)连接OM,证明OMBE,再结合等腰三角形的性质说明AEBE
21、,进而证明OMAE;(2)结合已知求出AB,再证明AOMABE,利用相似三角形的性质计算【详解】(1)连接OM,则OM=OB,1=2,BM平分ABC,1=3,2=3,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90,AMO=90,OMAE,点M在圆O上,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=4,cosC=BE=2,cosABC=,在ABE中,AEB=90,AB=6,设O的半径为r,则AO=6-r,OMBC,AOMABE,解得,的半径为【点睛】本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质
22、;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.22、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用工作时间+乙队每天所需费用工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得
23、出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式23、小亮说的对,理由见解析【解析】先根据完全平方公式和去括号
24、法则计算,再合并同类项,最后代入计算即可求解.【详解】2(x+1)2(4x5)=2x2+4x+24x+5,=2x2+7,当x=时,原式=+7=7;当x=时,原式=+7=7故小亮说的对【点睛】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.24、见解析【解析】(1)欲证明BACAED,只要证明CBADAE即可;(2)由DAECBA,可得,再证明四边形ADEF是平行四边形,推出DEAF,即可解决问题;【详解】证明(1)ADBC,BDAE,ABADBCAE,CBADAE,BACAED(2)由(1)得DAECBADC,AFED,AFEC,EFBC,ADBC,EFAD,BA
25、CAED,DEAC,四边形ADEF是平行四边形,DEAF,【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型25、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得详解:(1)设本次试点投放的A型车x
26、辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a400+2a3201840000,解得:a1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000=3辆、至少享有B型车2000=2辆点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组26、(1)1;(2)点D(82,0);(3)点D的坐标为(
27、31,0)或(31,0)【解析】分析:()由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA=1,据此可得答案; ()连接AA,利用折叠的性质和中垂线的性质证BAA是等边三角形,可得ABD=ABD=30,据此知AD=ABtanABD=2,继而可得答案; ()分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得详解:()如图1,由题意知OA=8、AB=1,OB=10,由折叠知,BA=BA=1,OA=1 故答案为1; ()如图2,连接AA点A落在线段AB的中垂线上,BA=AA BDA是由BDA折叠得到的,BDABDA,ABD=ABD,AB=AB
28、,AB=AB=AA,BAA是等边三角形,ABA=10,ABD=ABD=30,AD=ABtanABD=1tan30=2,OD=OAAD=82,点D(82,0); ()如图3,当点D在OA上时 由旋转知BDABDA,BA=BA=1,BAD=BAD=90 点A在线段OA的中垂线上,BM=AN=OA=4,AM=2,AN=MNAM=ABAM=12,由BMA=AND=BAD=90知BMAAND,则=,即=,解得:DN=35,则OD=ON+DN=4+35=31,D(31,0); 如图4,当点D在AO延长线上时,过点A作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,
29、由旋转知BDABDA,BA=BA=1,BAD=BAD=90 点A在线段OA的中垂线上,AM=AN=MN=4,则MC=BN=2,MO=MC+OC=2+1,由EMA=ANB=BAD=90知EMAANB,则=,即=,解得:ME=,则OE=MOME=1+ DOE=AME=90、OED=MEA,DOEAME,=,即=,解得:DO=3+1,则点D的坐标为(31,0) 综上,点D的坐标为(31,0)或(31,0)点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点27、(1)证明见解析(2)18【解析】(1)根据HL证明RtABCRtBAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可【详解】(1)证明:DC90,ABC和BAD都是Rt,在RtABC和RtBAD中,RtABCRtBAD(HL);(2)RtABCRtBAD,ABCBAD36,C90,BAC54,CAOCABBAD18【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”