《浙江省桐乡市2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省桐乡市2023届中考联考数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A4.4106 B44105 C4106 D0.441072如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是ABCD3如图所示的几何体
2、的主视图是( )ABCD4如图,BCDE,若A=35,E=60,则C等于()A60B35C25D205下列计算正确的是()Aa2a3=a5 B2a+a2=3a3 C(a3)3=a6 Da2a=26若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中一根大于m7已知am=2,an=3,则a3m+2n的值是()A24B36C72D68黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观其落差约30米,年平均流量1010立方米/秒若以小时作时间单位,则其年平均流
3、量可用科学记数法表示为()A6.06104立方米/时B3.136106立方米/时C3.636106立方米/时D36.36105立方米/时9下列计算正确的是( )Aa3a3=a9 B(a+b)2=a2+b2 Ca2a2=0 D(a2)3=a610如图,在ABC中,C90,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC6,NC,则四边形MABN的面积是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11因式分解:3x23x=_12某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为_元.13已知=32,则的余角是_14如图,点A
4、的坐标为(3,),点B的坐标为(6,0),将AOB绕点B按顺时针方向旋转一定的角度后得到AOB,点A的对应点A在x轴上,则点O的坐标为_15函数,当x0时,y随x的增大而_16若圆锥的地面半径为,侧面积为,则圆锥的母线是_17如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留)为_.三、解答题(共7小题,满分69分)18(10分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 1 2 3 2 3 2 3 3 4 3 3 4 3 35
5、3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:绘制如下的统计图,请补充完整;这30户家庭2018年4月份义务植树数量的平均数是_,众数是_;(2)“互联网全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有_户19(5分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明
6、AEFAGF;从而发现并证明了EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F在边BC上,且EAF=45,若BE=3,EF=5,求CF的长20(8分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数
7、是最初的两倍(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的_倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?21(10分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为 22(10分)如图,AC是O的直径,PA切O于点A,点B是O上的一点,且BAC30,APB60(1)求证:PB是O的切线;(2)若O的半径为2,求弦AB及PA,PB的长23
8、(12分)图 1 和图 2 中,优弧纸片所在O 的半径为 2,AB2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A发现:(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,ABA ;(2)当 BA与O 相切时,如图 2,求折痕的长拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A, O,设MNP(1)当15时,过点 A作 ACMN,如图 3,判断 AC 与半圆 O 的位置关系,并说明理由;(2)如图 4,当 时,NA与半
9、圆 O 相切,当 时,点 O落在上 (3)当线段 NO与半圆 O 只有一个公共点 N 时,直接写出的取值范围24(14分)已知关于x的方程x1+(1k1)x+k11=0有两个实数根x1,x1求实数k的取值范围; 若x1,x1满足x11+x11=16+x1x1,求实数k的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】4400000=4.41故选A点睛:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数2、
10、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象【详解】解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,抛物线向上平移5个单位后可得:,即,形成的图象是A选项故选A【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答3、A【解析】找到从正面看所得到的图形即可【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图4、C【解
11、析】先根据平行线的性质得出CBE=E=60,再根据三角形的外角性质求出C的度数即可【详解】BCDE,CBE=E=60,A=35,C+A=CBE,C=CBEC=6035=25,故选C【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.5、A【解析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案【详解】A、a2a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2a=a,故此选项错误;故选A【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算
12、法则是解题关键6、A【解析】先整理为一般形式,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根7、C【解析】试题解析:am=2,an=3,a3m+2n=a3ma2n=(am)3(an)2=2332=89=1故选C.8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝
13、对值1时,n是负数【详解】101036024=3.636106立方米/时,故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、D.【解析】试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算10、C【解析】连接CD,交MN于E,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MNCD,且CE=DECD=2CEMNAB,CDABCMNCAB在CMN中,C=90,MC=6,NC=,故选C二
14、、填空题(共7小题,每小题3分,满分21分)11、3x(x1)【解析】原式提取公因式即可得到结果【详解】解:原式=-3x(x-1),故答案为-3x(x-1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键12、28【解析】设标价为x元,那么0.9x-21=2120%,x=28.13、58【解析】根据余角:如果两个角的和等于90(直角),就说这两个角互为余角即其中一个角是另一个角的余角可得答案【详解】解:的余角是:90-32=58故答案为58【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度14、(,)【解析】作ACOB、ODAB,由点A、B坐标得出O
15、C=3、AC=、BC=OC=3,从而知tanABC=,由旋转性质知BO=BO=6,tanABO=tanABO=,设OD=x、BD=3x,由勾股定理求得x的值,即可知BD、OD的长即可.【详解】如图,过点A作ACOB于C,过点O作ODAB于D,A(3, ),OC=3,AC=,OB=6,BC=OC=3,则tanABC=,由旋转可知,BO=BO=6,ABO=ABO,=,设OD=x,BD=3x,由OD2+BD2=OB2可得(x)2+(3x)2=62,解得:x=或x= (舍),则BD=3x=,OD=x=,OD=OB+BD=6+=,点O的坐标为(,).【点睛】本题考查的是图形的旋转,熟练掌握勾股定理和三角
16、函数是解题的关键.15、减小【解析】先根据反比例函数的性质判断出函数的图象所在的象限,再根据反比例函数的性质进行解答即可【详解】解:反比例函数中, 此函数的图象在一、三象限,在每一象限内y随x的增大而减小.故答案为减小.【点睛】考查反比例函数的图象与性质,反比例函数 当时,图象在第一、三象限.在每个象限,y随着x的增大而减小,当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.16、13【解析】试题解析:圆锥的侧面积=底面半径母线长,把相应数值代入即可求解设母线长为R,则: 解得: 故答案为13.17、250【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体
17、图形为圆柱由三视图可得圆柱的半径和高,易求体积【详解】该立体图形为圆柱,圆柱的底面半径r=5,高h=10,圆柱的体积V=r2h=5210=250(立方单位)答:立体图形的体积为250立方单位故答案为250.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积高三、解答题(共7小题,满分69分)18、 (1) 3.4棵、3棵;(2)1.【解析】(1)由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得【详解】解:(1)由已知数据知3
18、棵的有12人、4棵的有8人,补全图形如下:这30户家庭2018年4月份义务植树数量的平均数是(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有户,故答案为:1【点睛】此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.19、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC
19、2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=90,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGEAF=9015=15,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG
20、=B,EAG=90,FCG=ACB+ACG=ACB+B=90,FG2=FC2+CG2=BE2+FC2;又EAF=15,而EAG=90,GAF=9015,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE2=5232=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫20、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化
21、方法列出方程并解答【详解】解:(1)依题意得:(3+2)(32)5故答案是:5;(2)依题意得:a+2+1a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a1+x2axa+1所以 a+3xa+3(a+1)2答:第三次变化后中间小桶中有2个小球【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答21、(I)x1;()x2;(III)见解析;()x1【解析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集【详解】(I)解不等式(1),得x1;()解
22、不等式(2),得x2;()把不等式(1)和(2)解集在数轴上表示出来,如下图所示:()原不等式组的解集为x1【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键22、(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PBOB根据四边形的内角和为360,结合已知条件可得OBP=90得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果(1)连接OBOA=OB,OBA=BAC=30 AOB=80-30-30=20 PA切O于点A,OAPA,OAP=90四边形的内角和为360,OBP=360-90-
23、60-20=90 OBPB又点B是O上的一点,PB是O的切线 (2)连接OP,PA、PB是O的切线,PA=PB,OPA=OPB=,APB=30在RtOAP中,OAP=90,OPA=30,OP=2OA=22=1 PA=OP2-OA2=2PA=PB,APB=60,PA=PB=AB=2考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可23、发现:(1)1,60;(2)2;拓展:(1)相切,理由详见解析;(2)45;30;(3)030或 4590【解析】发现:(1)利用垂径定理和勾股定理即可求出点O
24、到AB的距离;利用锐角三角函数的定义及轴对称性就可求出ABA(2)根据切线的性质得到OBA=90,从而得到ABA=120,就可求出ABP,进而求出OBP=30过点O作OGBP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长拓展:(1)过A、O作AHMN于点H,ODAC于点D用含30角的直角三角形的性质可得OD=AH=AN=MN=2可判定AC与半圆相切;(2)当NA与半圆相切时,可知ONAN,则可知=45,当O在时,连接MO,则可知NO=MN,可求得MNO=60,可求得=30;(3)根据点A的位置不同得到线段NO与半圆O只有一个公共点N时的取值范围是030或4590【详解】发现:
25、(1)过点O作OHAB,垂足为H,如图1所示,O的半径为2,AB=2,OH=在BOH中,OH=1,BO=2ABO=30图形沿BP折叠,得到点A的对称点AOBA=ABO=30ABA=60(2)过点O作OGBP,垂足为G,如图2所示BA与O相切,OBABOBA=90OBH=30,ABA=120ABP=ABP=60OBP=30OG=OB=1BG=OGBP,BG=PG=BP=2折痕的长为2拓展:(1)相切分别过A、O作AHMN于点H,ODAC于点D如图3所示,ACMN四边形AHOD是矩形AH=O=15ANH=30OD=AH=AN=MN=2AC与半圆(2)当NA与半圆O相切时,则ONNA,ONA=2=9
26、0,=45当O在上时,连接MO,则可知NO=MN,OMN=0MNO=60,=30,故答案为:45;30(3)点P,M不重合,0,由(2)可知当增大到30时,点O在半圆上,当030时点O在半圆内,线段NO与半圆只有一个公共点B;当增大到45时NA与半圆相切,即线段NO与半圆只有一个公共点B当继续增大时,点P逐渐靠近点N,但是点P,N不重合,90,当4590线段BO与半圆只有一个公共点B综上所述030或4590【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键24、 (2) k;(2)-2.【解析】试题分
27、析:(2)根据方程的系数结合根的判别式,即可得出=4k+50,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x2+x2=22k、x2x2=k22,将其代入x22+x22=(x2+x2)22x2x2=26+x2x2中,解之即可得出k的值试题解析:(2)关于x的方程x2+(2k2)x+k22=0有两个实数根x2,x2,=(2k2)24(k22)=4k+50,解得:k,实数k的取值范围为k(2)关于x的方程x2+(2k2)x+k22=0有两个实数根x2,x2,x2+x2=22k,x2x2=k22x22+x22=(x2+x2)22x2x2=26+x2x2,(22k)22(k22)=26+(k22),即k24k22=0,解得:k=2或k=6(不符合题意,舍去)实数k的值为2考点:一元二次方程根与系数的关系,根的判别式.