《湖南省茶陵县重点达标名校2023届中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省茶陵县重点达标名校2023届中考数学模拟预测题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如图,ABCD,1=45,3=80,则2的度数为()A30B35C40D452一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )A120元B125元C135元D140元3方程的解为( )Ax3Bx4Cx5Dx54如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则SDEF:SABF=( )A2:3B4:9C2:5D4:255有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:40m+10=43
3、m1;40m+10=43m+1,其中正确的是()ABCD6甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数如果设甲每小时做x个,那么可列方程为( )ABCD7共享单车为市民短距离出行带来了极大便利据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A259104B25.9105C2.59106D0.2591078某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的
4、是( )A这10名同学体育成绩的中位数为38分B这10名同学体育成绩的平均数为38分C这10名同学体育成绩的众数为39分D这10名同学体育成绩的方差为293点40分,时钟的时针与分针的夹角为()A140B130C120D11010如图,将ABE向右平移2cm得到DCF,如果ABE的周长是16cm,那么四边形ABFD的周长是( ) A16cmB18cmC20cmD21cm11如图,直线mn,直角三角板ABC的顶点A在直线m上,则的余角等于( )A19B38C42D5212二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) ABCD二、填空题:(本大题共6个小题,每小题
5、4分,共24分)13如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 14如图,平行于x轴的直线AC分别交抛物线(x0)与(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则=_15按照一定规律排列依次为,.按此规律,这列数中的第100个数是_16如图,在ABC中,A60,若剪去A得到四边形BCDE,则12_17在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n_18有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环
6、数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BEDC(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC8,cosBED,求AD的长20(6分)如图,O是RtABC的外接圆,C=90,tanB=,过点B的直线l是O的切线,点D是直线l上一点,过点D作DECB交CB延长线于点E,连接AD,交O于点F,连接BF、CD交于点G(1)求证:ACBBED;(2)当ADAC时,求 的值
7、;(3)若CD平分ACB,AC=2,连接CF,求线段CF的长21(6分)已知:如图,E,F是ABCD的对角线AC上的两点,BEDF.求证:AFCE22(8分)已知:如图,在RtABO中,B=90,OAB=10,OA=1以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,P与x轴的另一交点为N,点M在P上,且满足MPN=60P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积(探究)当P和ABO的边所在的直线相切时,求点P的坐标(
8、拓展)当与RtABO的边有两个交点时,请你直接写出t的取值范围23(8分)如图,已知,求证 24(10分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;(拓展探究)(2)如图(2)在RtABC中,点F为斜边BC的中点,分别以AB,AC为底边,在RtABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60,得到正方形ABCD,请直接写出BD平方的值25(10分)计算:2
9、sin30()0+|1|+()126(12分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在ABC内,CAE+CBE=1(1)如图,当四边形ABCD和EFCG均为正方形时,连接BFi)求证:CAECBF;ii)若BE=1,AE=2,求CE的长;(2)如图,当四边形ABCD和EFCG均为矩形,且时,若BE1,AE=2,CE=3,求k的值;(3)如图,当四边形ABCD和EFCG均为菱形,且DAB=GEF=45时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系(直接写出结果,不必写出解答过程)27(12分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行
10、涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】分析:根据平行线的性质和三角形的外角性质解答即可详解:如图,ABCD,1=45,4=1=45,3=80,2=3-4=80-45=35,故选B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答2、B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解
11、解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)80%解这个方程得:x=125则这种服装每件的成本是125元故选B考点:一元一次方程的应用3、C【解析】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,检验:当x=5时,(x-1)(x+3)0,所以x=5是原方程的解,故选C.4、D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出DEFBAF,从而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25试题解析:四边形ABCD是平行四边形,ABCD,BA=DCEAB=DEF,AFB=DFE,DEFBAF,DE:AB=
12、DE:DC=2:5,SDEF:SABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质5、D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案解:根据总人数列方程,应是40m+10=43m+1,错误,正确;根据客车数列方程,应该为,错误,正确;所以正确的是故选D考点:由实际问题抽象出一元一次方程6、A【解析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做
13、 45 个所用时间相等可得=.故选A【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键7、C【解析】绝对值大于1的正数可以科学计数法,a10n,即可得出答案.【详解】n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.【点睛】本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.8、C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数=38.4方差=(3638.4)2+2(3738.4)2+(3838.4)2+4(3938.4)2+2(4038.4)2=1.64;选
14、项A,B、D错误;故选C考点:方差;加权平均数;中位数;众数9、B【解析】根据时针与分针相距的份数乘以每份的度数,可得答案【详解】解:3点40分时针与分针相距4+=份,30=130,故选B【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键10、C【解析】试题分析:已知,ABE向右平移2cm得到DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm故答案选C考点:平移的性质.11、D【解析】试题分析:过C作CD直线m,mn,CDmn,D
15、CA=FAC=52,=DCB,ACB=90,=9052=38,则a的余角是52故选D考点:平行线的性质;余角和补角12、D【解析】根据二次函数图象开口向上得到a0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c0,对称轴为直线 b0,当x=1时y=a+b+c0,的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】因为大正方
16、形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.14、5- 【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解设点C的坐标为(1,),则点B的坐标为(,),点D的坐标为(1,1),点E的坐标为(,1),则AB=,DE=1,则=5考点:二次函数的性质15、【解析】根据按一定规律排列的一列数依次为,可得第n个数为,据此可得第100个数【详解】由题意,数列可改写成,则后一个数的分子比前一个数的法则大2,后一个数的分母比前一个数的分母大3,第n个数为,这列数中的第100个数为;故答案为:【点睛】本题考查数字类规律,解题的关键是
17、读懂题意,掌握数字类规律基本解题方法.16、240.【解析】试题分析:1+2=180+60=240考点:1.三角形的外角性质;2.三角形内角和定理17、1【解析】根据白球的概率公式=列出方程求解即可【详解】不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)=解得:n=1,故答案为1【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=18、小林【解析】观察图形可知,小林的成绩波动比较大,故小林是新手故答案是:小林三、解答题:(本大题共9个小题,
18、共78分,解答应写出文字说明、证明过程或演算步骤19、(1)AC与O相切,证明参见解析;(2).【解析】试题分析:(1)由于OCAD,那么OAD+AOC=90,又BED=BAD,且BED=C,于是OAD=C,从而有C+AOC=90,再利用三角形内角和定理,可求OAC=90,即AC是O的切线;(2)连接BD,AB是直径,那么ADB=90,在RtAOC中,由于AC=8,C=BED,cosBED=,利用三角函数值,可求OA=6,即AB=12,在RtABD中,由于AB=12,OAD=BED,cosBED=,同样利用三角函数值,可求AD试题解析:(1)AC与O相切弧BD是BED与BAD所对的弧,BAD=
19、BED,OCAD,AOC+BAD=90,BED+AOC=90,即C+AOC=90,OAC=90,ABAC,即AC与O相切;(2)连接BDAB是O直径,ADB=90,在RtAOC中,CAO=90,AC=8,ADB=90,cosC=cosBED=,AO=6,AB=12,在RtABD中,cosOAD=cosBED=,AD=ABcosOAD=12=考点:1.切线的判定;2.解直角三角形20、(1)详见解析;(2) ;(3).【解析】(1)只要证明ACB=E,ABC=BDE即可;(2)首先证明BE:DE:BC=1:2:4,由GCBGDF,可得=;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1
20、)证明:如图1中,DECB,ACB=E=90,BD是切线,ABBD,ABD=90,ABC+DBE=90,BDE+DBE=90,ABC=BDE,ACBBED;(2)解:如图2中,ACBBED;四边形ACED是矩形,BE:DE:BC=1:2:4,DFBC,GCBGDF,=;(3)解:如图3中,tanABC=,AC=2,BC=4,BE=4,DE=8,AB=2,BD=4,易证DBEDBF,可得BF=4=BC,AC=AF=2,CFAB,设CF交AB于H,则CF=2CH=2.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运
21、用所学知识解决问题,所以中考常考题型21、参见解析【解析】分析:先证ACB=CAD,再证出BECDFA,从而得出CE=AF详解:证明:平行四边形中,又, 点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.22、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析【解析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论【详解】发现(3
22、)P(2,0),OP=2OA=3,AP=3,的长度为故答案为;(2)设P半径为r,则有r=23=3,当t=2时,如图3,点N与点A重合,PA=r=3,设MP与AB相交于点Q在RtABO中,OAB=30,MPN=60PQA=90,PQPA,AQ=APcos30,S重叠部分=SAPQPQAQ即重叠部分的面积为探究如图2,当P与直线AB相切于点C时,连接PC,则有PCAB,PC=r=3OAB=30,AP=2,OP=OAAP=32=3;点P的坐标为(3,0); 如图3,当P与直线OB相切于点D时,连接PD,则有PDOB,PD=r=3,PDAB,OPD=OAB=30,cosOPD,OP,点P的坐标为(,
23、0);如图2,当P与直线OB相切于点E时,连接PE,则有PEOB,同可得:OP;点P的坐标为(,0); 拓展t的取值范围是2t3,2t4,理由:如图4,当点N运动到与点A重合时,与RtABO的边有一个公共点,此时t=2;当t2,直到P运动到与AB相切时,由探究得:OP=3,t3,与RtABO的边有两个公共点,2t3如图6,当P运动到PM与OB重合时,与RtABO的边有两个公共点,此时t=2;直到P运动到点N与点O重合时,与RtABO的边有一个公共点,此时t=4;2t4,即:t的取值范围是2t3,2t4【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图
24、形是解答本题的关键23、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题24、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或168【解析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根
25、据RtABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出AMF=MAN=ANF=90,即可判定四边形AMFN是矩形;(3)分两种情况:以点A为旋转中心将正方形ABCD逆时针旋转60,以点A为旋转中心将正方形ABCD顺时针旋转60,分别依据旋转的性质以及勾股定理,即可得到结论【详解】(1)AB=AD,CB=CD,点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形理由:如图2,连接AF,RtABC中,点F为斜边BC的中点,AF=CF
26、=BF,又等腰三角形ABD 和等腰三角形ACE,AD=DB,AE=CE,由(1)可得,DFAB,EFAC,又BAC=90,AMF=MAN=ANF=90,四边形AMFN是矩形;(3)BD的平方为16+8或168分两种情况:以点A为旋转中心将正方形ABCD逆时针旋转60,如图所示:过D作DEAB,交BA的延长线于E,由旋转可得,DAD=60,EAD=30,AB=2=AD,DE=AD=,AE=,BE=2+,RtBDE中,BD2=DE2+BE2=()2+(2+)2=16+8以点A为旋转中心将正方形ABCD顺时针旋转60,如图所示:过B作BFAD于F,旋转可得,DAD=60,BAD=30,AB=2=AD
27、,BF=AB=,AF=,DF=2,RtBDF中,BD2=BF2+DF2=()2+(2-)2=168综上所述,BD平方的长度为16+8或168【点睛】本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解解题时注意:有三个角是直角的四边形是矩形25、1+【解析】分析:直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案详解:原式=2-1+-1+2=1+点睛:此题主要考查了实数运算,正确化简各数是解题关键26、(1)i)证明见试题解析;ii);(2);
28、(3)【解析】(1)i)由ACE+ECB=45, BCF+ECB=45,得到ACE=BCF,又由于,故CAECBF;ii)由,得到BF=,再由CAECBF,得到CAE=CBF,进一步可得到EBF=1,从而有,解得;(2)连接BF,同理可得:EBF=1,由,得到,故,从而,得到,代入解方程即可;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,故,从而有【详解】解:(1)i)ACE+ECB=45, BCF+ECB=45,ACE=BCF,又,CAECBF;ii),BF=,CAECBF,CAE=CBF,又CAE+CBE=1,CBF+CBE=1,即EBF=1,解得;(2)连接BF,同理可得:EBF=1,解得;(3)连接BF,同理可得:EBF=1,过C作CHAB延长线于H,可得:,【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质27、.【解析】试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.试题解析:解:画树状图如答图:共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,P(A,C两个区域所涂颜色不相同)=.考点:1画树状图或列表法;2概率