《湖南长沙青竹湖湘一外国语校2022-2023学年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《湖南长沙青竹湖湘一外国语校2022-2023学年中考数学模拟预测题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1我国古代数学名著孙子算经中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方
2、程组为()ABCD2下列成语描述的事件为随机事件的是()A水涨船高 B守株待兔 C水中捞月 D缘木求鱼3已知,C是线段AB的黄金分割点,ACBC,若AB=2,则BC=()A3B(+1)C1D(1)4如图所示的正方体的展开图是()ABCD5如图,一把带有60角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45角,则三角尺斜边的长度为()A12cmB12cmC24cmD24cm6制作一块3m2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A360元B720元C1080元D2
3、160元7剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是()ABCD84的平方根是( )A4B4C2D29如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)10函数y=中,自变量x的取值范围是()Ax3Bx3Cx=3Dx31
4、1下列运算不正确的是A BC D12如图直线ymx与双曲线y=交于点A、B,过A作AMx轴于M点,连接BM,若SAMB2,则k的值是()A1B2C3D4二、填空题:(本大题共6个小题,每小题4分,共24分)13如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,AOB=120,则扇面ABDC的周长为_cm14如图,在菱形ABCD中,于E,则菱形ABCD的面积是_15已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为_16=_17如图,等腰ABC中,AB=AC,DBC=15,AB的垂直平分线MN交AC于点D,则A
5、的度数是 18如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;按此作法进行下去,则的长是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经
6、验,对它们之间的关系进行了探究下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在RtABC中,C=90,AC=BC=6cm,D是线段AB上一动点,射线DEBC于点E,EDF=60,射线DF与射线AC交于点F设B,E两点间的距离为xcm,E,F两点间的距离为ycm(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当DEF为等边三角形时
7、,BE的长度约为 cm20(6分)阅读下列材料:题目:如图,在ABC中,已知A(A45),C=90,AB=1,请用sinA、cosA表示sin2A21(6分)如图,已知,等腰RtOAB中,AOB=90,等腰RtEOF中,EOF=90,连结AE、BF求证:(1)AE=BF;(2)AEBF22(8分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;连接PO,交AC于点E,求的最大值;过点P作PFAC,垂足为点F,连接PC,是否存在点P,使PFC中的一个角等于CAB的2倍?若存在,请直接写出点P的坐标;若不存在
8、,请说明理由.23(8分)如图,ACBD,DE交AC于E,ABDE,AD求证:ACAE+BC24(10分)如图,梯形ABCD中,ADBC,DCBC,且B=45,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作FAE=45交射线BC于点E、交边DCN于点N,联结EF(1)当CM:CB=1:4时,求CF的长(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域(3)当ABMEFN时,求CM的长25(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题
9、:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少? 26(12分)如图,已知O的直径AB=10,弦AC=6,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E求证:DE是O的切线求DE的长27(12分)计算:解不等式组,并写出它的所有整数解参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1
10、、C【解析】设大马有x匹,小马有y匹,根据题意可得等量关系:大马数小马数100;大马拉瓦数小马拉瓦数100,根据等量关系列出方程组即可【详解】解:设大马有x匹,小马有y匹,由题意得:,故选C【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组2、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B考点:随机事件.3、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点
11、,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍4、A【解析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.5、D【解析】过A作ADBF于D,根据45角的三角函数值可求出AB的长度,根据含30角的直角三
12、角形的性质求出斜边AC的长即可.【详解】如图,过A作ADBF于D,ABD=45,AD=12,=12,又RtABC中,C=30,AC=2AB=24,故选:D【点睛】本题考查解直角三角形,在直角三角形中,30角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.6、C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可【详解】3m2m=6m2,长方形广告牌的成本是1206=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,扩大后长方形广告牌的面积=96=54m2,扩大后长方形广告牌的成本是5420=1080元,故
13、选C【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键7、C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180后,能与原图形重合,那么就说
14、这个图形是中心对称图形.8、C【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题【详解】(1)1=4,4的平方根是1故选D【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根9、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又A的坐标是(1,1),结合中点坐标公式可得P1的坐
15、标是(1,0);同理P1的坐标是(1,1),记P1(a1,b1),其中a1=1,b1=1根据对称关系,依次可以求得:P3(4a1,1b1),P4(1+a1,4+b1),P5(a1,1b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(41+a1,b1),1010=4501+1,点P1010的坐标是(1010,1),故选:B点睛:本题考查了对称的性质,坐标与图形的变化-旋转,根据条件求出前边几个点的坐标,得到规律是解题关键10、D【解析】由题意得,x10,解得x1故选D11、B【解析】,B是错的,A、C、D运算是正确的,故选B12、B
16、【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由SABM=1SAOM并结合反比例函数系数k的几何意义得到k的值【详解】根据双曲线的对称性可得:OA=OB,则SABM1SAOM1,SAOM|k|1,则k1又由于反比例函数图象位于一三象限,k0,所以k1故选B【点睛】本题主要考查了反比例函数y中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点二、填空题:(本大题共6个小题,每小题4分,共24分)13、1+1【解析】分析:根据题意求出OC,根据弧长公式分别求出AB、CD的弧长,根据扇形周长公式计算详解:由题意得,OC=AC=OA
17、=15,的长=20,的长=10,扇面ABDC的周长=20+10+15+15=1+1(cm),故答案为1+1点睛:本题考查的是弧长的计算,掌握弧长公式: 是解题的关键14、【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CDAE,可求菱形ABCD的面积【详解】sinD= AD=11四边形ABCD是菱形AD=CD=11菱形ABCD的面积=118=96cm1故答案为:96cm1【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键15、1【解析】【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解关于k的方程,
18、然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,整理得k2+1k=0,解得k1=0,k2=1,因为k0,所以k的值为1故答案为:1【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解16、1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+22=1故答案为:1点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答
19、本题的关键.17、50【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得A=ABD,然后表示出ABC,再根据等腰三角形两底角相等可得C=ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】MN是AB的垂直平分线,AD=BD. A=ABD.DBC=15,ABC=A+15.AB=AC,C=ABC=A+15.A+A+15+A+15=180,解得A=50故答案为5018、【解析】【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,【详解】直线y
20、=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2=4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是,故答案为:【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(1)3.5;(3)见解析;
21、 (4)3.1【解析】根据题意作图测量即可【详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当DEF为等边三角形是,EF=DE,由B=45,射线DEBC于点E,则BE=EF即y=x所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1【点睛】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究20、sin2A=2cosAsinA【解析】先作出直角三角形的斜边的中线,进而求出,CED=2A,最后用三角函数的定义即可得出结论【详解】解:如图,作RtABC的斜边AB上的中线CE,则 CED=2A
22、,过点C作CDAB于D,在RtACD中,CD=ACsinA,在RtABC中,AC=ABcosA=cosA在RtCED中,sin2A=sinCED= 2ACsinA=2cosAsinA【点睛】此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和CED=2A是解本题的关键21、见解析【解析】(1)可以把要证明相等的线段AE,CF放到AEO,BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去BOE的结果,所以相等,由此可以证明AEOBFO;(2)由(1)知:OAC=OBF,BDA=AOB=90,由此
23、可以证明AEBF【详解】解:(1)证明:在AEO与BFO中,RtOAB与RtEOF等腰直角三角形,AO=OB,OE=OF,AOE=90-BOE=BOF,AEOBFO,AE=BF;( 2)延长AE交BF于D,交OB于C,则BCD=ACO由(1)知:OAC=OBF,BDA=AOB=90,AEBF22、(1);(2)有最大值1;(2,3)或(,)【解析】(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据勾股定理的逆定
24、理得到ABC是以ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,PCF=2BAC=DGC+CDG,情况二,FPC=2BAC,解直角三角形即可得到结论【详解】(1)当x=0时,y=2,即C(0,2),当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得,解得,抛物线的解析是为;(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,直线PNy轴,PEMOEC,把x=0代入y=-x+2,得y=2,即OC=2,设点P(x,-x2+x+2),则点M(x,-x+2),PM=(-x2+x+2)-(-
25、x+2)=-x2+2x=-(x-2)2+2,=,0x4,当x=2时,=有最大值1A(4,0),B(-1,0),C(0,2),AC=2,BC=,AB=5,AC2+BC2=AB2,ABC是以ACB为直角的直角三角形,取AB的中点D,D(,0),DA=DC=DB=,CDO=2BAC,tanCDO=tan(2BAC)=,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,PCF=2BAC=PGC+CPG,CPG=BAC,tanCPG=tanBAC=,即,令P(a,-a2+a+2),PR=a,RC=-a2+a,a1=0(舍去),a2=2,xP=2,-a2+a+2=3,P(2,3)情况二,FP
26、C=2BAC,tanFPC=,设FC=4k,PF=3k,PC=5k,tanPGC=,FG=6k,CG=2k,PG=3k,RC=k,RG=k,PR=3k-k=k,a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),综上所述:P点坐标是(2,3)或(,)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏23、见解析.【解析】由“SAS”可证ABCDEC,可得BCCE,即可得结论【详解】证明:ABDE,AD,ACBDCE90ABCDEC(SAS)BCC
27、E,ACAE+CEACAE+BC【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键24、 (1) CF=1;(2)y=,0x1;(3)CM=2【解析】(1)如图1中,作AHBC于H首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在RtAEH中,AE2=AH2+EH2=12+(1+y)2,由EAMEBA,可得,推出AE2=EMEB,由此构建函数关系式即可解决问题;(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG想办法证明CM=CN,MN=DN+HM即可解决问题;【详解】解:(1)如图
28、1中,作AHBC于HCDBC,ADBC,BCD=D=AHC=90,四边形AHCD是矩形,AD=DC=1,四边形AHCD是正方形,AH=CH=CD=1,B=45,AH=BH=1,BC=2,CM=BC=,CMAD,=,=,CF=1(2)如图1中,在RtAEH中,AE2=AH2+EH2=12+(1+y)2,AEM=AEB,EAM=B,EAMEBA,=,AE2=EMEB,1+(1+y)2=(x+y)(y+2),y=,22x0,0x1(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG则ADNAHG,MANMAG,MN=MG=HM+GH=HM+DN,ABMEFN,EFN=
29、B=45,CF=CE,四边形AHCD是正方形,CH=CD=AH=AD,EH=DF,AHE=D=90,AHEADF,AEH=AFD,AEH=DAN,AFD=HAM,HAM=DAN,ADNAHM,DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,x+x=1,x=1,CM=2【点睛】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明EAMEBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.25、(1)a=0.3,b=4;(2)99人;(3)【解析】分析:(1
30、)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案详解:(1)a=1-0.15-0.35-0.20=0.3;总人数为:30.15=20(人),b=200.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180(0.35+0.20)=99(人);(3)画树状图得:共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,所选两人正好都是甲班学生的概率是:点睛:此题
31、考查了列表法或树状图法求概率以及条形统计图的知识用到的知识点为:概率=所求情况数与总情况数之比26、 (1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分BAC,OA=OD,可证得ODA=DAE,由平行线的性质可得ODAE,再由DEAC即可得OEDE,即DE是O的切线;(2)过点O作OFAC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,AD平分BAC,DAE=DAB,OA=OD,ODA=DAO,ODA=DAE,ODAE,DEACOEDEDE是O的切线;(2)过点O作OFAC于点F,A
32、F=CF=3,OF=,OFE=DEF=ODE=90,四边形OFED是矩形,DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.27、(1);(1)0,1,1.【解析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式11 ,7(1) ,解不等式得:x1,解不等式得:x1,不等式组的解集是:1x1故不等式组的整数解是:0,1,1【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键