江西省南昌市进贤一中2022-2023学年高三六校第一次联考数学试卷含解析.doc

上传人:lil****205 文档编号:88308630 上传时间:2023-04-25 格式:DOC 页数:16 大小:1.45MB
返回 下载 相关 举报
江西省南昌市进贤一中2022-2023学年高三六校第一次联考数学试卷含解析.doc_第1页
第1页 / 共16页
江西省南昌市进贤一中2022-2023学年高三六校第一次联考数学试卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《江西省南昌市进贤一中2022-2023学年高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌市进贤一中2022-2023学年高三六校第一次联考数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到.已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( )A甲B乙C丙

2、D丁2设,是非零向量.若,则( )ABCD3幻方最早起源于我国,由正整数1,2,3,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方定义为阶幻方对角线上所有数的和,如,则( )A55B500C505D50504如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD5已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )ABCD6已知椭圆内有一条以点为中点的弦,则直线的方程为( )ABCD7一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,

3、则容器里水面的最大高度为( )ABCD8某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )ABCD9已知函数,其中,若恒成立,则函数的单调递增区间为( )ABCD10已知全集,函数的定义域为,集合,则下列结论正确的是ABCD11如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是( ) A2014年我国入境游客万人次最少B后4年我国入境游客万人次呈逐渐增加趋势C这6年我国入境游客万人次的中位数大于13340万人次D前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差12设全

4、集,集合,.则集合等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知向量满足,则_.14函数的最小正周期是_,单调递增区间是_.15已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_.16已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为_元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设数列是公差不为零的等差数列,其前项和为,若,成等比数列(1)求及;(2)设,设数列的前项和,证明:18(12分)已知的内角、的对边分别为、,满足.有三个条件:;.其中三个

5、条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求;(2)设为边上一点,且,求的面积.19(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.20(12分)(1)求曲线和曲线围成图形的面积;(2)化简求值:21(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.22(10分)在极坐标系中,已知曲线,(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】可采用假设法进行讨论推理,即可

6、得到结论.【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的,丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的;假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以断定值班人是甲.故选:A.【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.2、D【解析】试题分析:由题意得:若,则;若,则由可知,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐

7、标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);将条件通过向量的线性运算进行转化,再利用求解(较难);建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3、C【解析】因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,于是故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力

8、,属于中档题.4、A【解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.5、C【解析】在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C【点睛】本题考查等比数列求和公式的应用,属于基础题.6、C【解析】设,则,相减得到,解得答案.【详解】设,设直线斜率为,则,相减得到:,的中点为,即,故,直线的方程为:.

9、故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.7、B【解析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题8、A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为 故答案为A.点睛:思考三视图还原空间几何体

10、首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9、A【解析】,从而可得,再解不等式即可.【详解】由已知,所以,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.10、A【解析】求函数定义域得集

11、合M,N后,再判断【详解】由题意,故选A【点睛】本题考查集合的运算,解题关键是确定集合中的元素确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定11、D【解析】ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【详解】A由统计图可知:2014年入境游客万人次最少,故正确;B由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C入境游客万人次的中位数应为与的平均数,大于万次,故正确;D由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图

12、表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.12、A【解析】先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】首先根据向量的数量积的运算律求出,再根据计算可得;【详解】解:因为,所以又所以所以故答案为:【点睛】本题考查平面向量的数量积的运算,属于基础题.14、 , 【解析】化简函数的解析式,利用余弦函数的图象和性质求解即可【详解】函

13、数,最小正周期,令,可得,所以单调递增区间是,故答案为:,【点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题15、【解析】画出函数的图象,再画的图象,求出一个交点时的的值,然后平行移动可得有两个交点时的的范围【详解】函数的图象如图所示:因为方程有且只有两个不相等的实数根,所以图象与直线有且只有两个交点即可,当过点时两个函数有一个交点,即时,与函数有一个交点,由图象可知,直线向下平移后有两个交点,可得,故答案为:【点睛】本题主要考查了方程的跟与函数的图象交点的转化,数形结合的思想,属于中档题16、【解析】设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值.【详

14、解】设桶的底面半径为,高为,则,故,圆通的造价为解法一: 当且仅当,即时取等号.解法二:,则,令,即,解得,此函数在单调递增;令,即,解得,此函数在上单调递减; 令,即,解得,即当时,圆桶的造价最低.所以 故答案为:【点睛】本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)证明见解析.【解析】(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【点

15、睛】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.18、(1);(2).【解析】(1)先求出角,进而可得出,则中有且只有一个正确,正确,然后分正确和正确两种情况讨论,结合三角形的面积公式和余弦定理可求得的值;(2)计算出和,计算出,可得出,进而可求得的面积.【详解】(1)因为,所以,得,为钝角,与矛盾,故中仅有一个正确,正确.显然,得.当正确时,由,得(无解);当正确时,由于,得;(2)如图,因为,则,则,.【点睛】本题考查解三角形综合应用,涉及三角形面积公式和余弦定理的应用,考查计算能力,属于中等题.19、(1),(2)【解析】(1)先由正弦定理,得到,进而可得,再由,即可得出

16、结果;(2)先由余弦定理得,再根据题中数据,可得,从而可求出,得到,进而可求出结果.【详解】(1)由正弦定理得,所以,因为,所以,即,所以,又因为,所以,.(2)在和中,由余弦定理得,.因为,又因为,即,所以,所以,又因为,所以.所以的面积.【点睛】本题主要考查解三角形,灵活运用正弦定理和余弦定理即可,属于常考题型.20、(1)(2)【解析】(1)求曲线和曲线围成的图形面积,首先求出两曲线交点的横坐标0、1,然后求在区间上的定积分(2)首先利用二倍角公式及两角差的余弦公式计算出,然后再整体代入可得;【详解】解:(1)联立解得,所以曲线和曲线围成的图形面积(2)【点睛】本题考查定积分求曲边形的面

17、积以及三角恒等变换的应用,属于中档题.21、(1)(2)证明见解析【解析】(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【详解】(1),即当时,不等式化为,当时,不等式化为,此时无解当时,不等式化为,综上,原不等式的解集为(2)要证,恒成立即证,恒成立的最小值为2,只需证,即证又成立,原题得证【点睛】本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.22、(1)表示一条直线,是圆心为,半径为的圆;(2).【解析】(1)直接利用极坐标方程与直角坐标方程之间的转换关系可将曲线的方程化为直角坐标方程,进而可判断出曲线的形状,在曲线的方程两边同时乘以得,由可将曲线的方程化为直角坐标方程,由此可判断出曲线的形状;(2)由直线过圆的圆心,可得出为圆的一条直径,进而可得出.【详解】(1),则曲线的普通方程为,曲线表示一条直线;由,得,则曲线的直角坐标方程为,即所以,曲线是圆心为,半径为的圆;(2)由(1)知,点在直线上,直线过圆的圆心因此,是圆的直径,【点睛】本题考查曲线的极坐标方程与直角坐标方程之间的转化,同时也考查了直线截圆所得弦长的计算,考查计算能力,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁