湖北省宣恩县重点中学2022-2023学年中考一模数学试题含解析.doc

上传人:lil****205 文档编号:88308535 上传时间:2023-04-25 格式:DOC 页数:19 大小:849KB
返回 下载 相关 举报
湖北省宣恩县重点中学2022-2023学年中考一模数学试题含解析.doc_第1页
第1页 / 共19页
湖北省宣恩县重点中学2022-2023学年中考一模数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《湖北省宣恩县重点中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省宣恩县重点中学2022-2023学年中考一模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列图形中,是中心对称图形但不是轴对称图形的是()ABCD2如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A2B0C1D33已知二次函数的图象如图所示,则下列说法正确的是( )A0B

2、0C0D04如图,直线ABCD,A70,C40,则E等于()A30B40C60D705方程的解是( )ABCD6如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )ABCD7九章算术是我国古代内容极为丰富的数学名著书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A3步B5步C6步D8步8设,是一元二次方程x22x10的两个根,则的值是()A2 B1 C2 D19二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一

3、次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c010我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11在33方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_2x32y34y12不等式组的整数解是_13如图,BP是ABC中ABC的平分线,CP是ACB的外角的平分线,如果ABP=20,ACP=50,则P=_14如图,在边长为1正方形ABCD中,点P是边AD上的动点,将PAB沿直线BP翻折,点

4、A的对应点为点Q,连接BQ、DQ则当BQ+DQ的值最小时,tanABP_15因式分解_.16如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则APB=_ .17若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_.三、解答题(共7小题,满分69分)18(10分)如图1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P,N分别为DE,DC,BC的中点(1)观察猜想图1中,线段PM与PN的数量关系是 ,位置关系是 ;

5、(2)探究证明把ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由;(3)拓展延伸把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值19(5分)如图,在ABC中,A45,以AB为直径的O经过AC的中点D,E为O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为O的切线;若F为OA的中点,O的半径为2,求BE的长.20(8分)(1)化简:(2)解不等式组21(10分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0)(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m0)与抛物线

6、F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A是点A关于原点O的对称点,如图1判断AAB的形状,并说明理由;平面内是否存在点P,使得以点A、B、A、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由22(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF求证:四边形ACDF是平行四边形;当CF平分BCD时,写出BC与CD的数量关系,并说明理由23(12分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为1

7、8米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.24(14分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树

8、状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】解:A、是轴对称图形,也是中心对称图形,故错误;B、是中心对称图形,不是轴对称图形,故正确;C、是轴对称图形,也是中心对称图形,故错误;D、是轴对称图形,也是中心对称图形,故错误故选B【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、B【解析】解关于y的不等式组,结合解集无解,确定a的范围,

9、再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可【详解】由关于y的不等式组,可整理得 该不等式组解集无解,2a+42即a3又得x而关于x的分式方程有负数解a41a4于是3a4,且a 为整数a3、2、1、1、1、2、3则符合条件的所有整数a的和为1故选B【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键3、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+

10、c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定4、A【解析】ABCD,A=70,1=A=70,1=C+E,C=40,E=1C=7040=30故选A5、D【解析】按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果

11、要检验.6、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1故选A【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图7、C【解析】试题解析:根据勾股定理得:斜边为 则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,故选C8、D【解析】试题分析:、是一元二次方程的两个根,=-1,故选D考点:根与系数的关系9、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故

12、此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值10、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为

13、长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答二、填空题(共7小题,每小题3分,满分21分)11、0【解析】根据题意列出方程组,求出方程组的解即可得到结果【详解】解:根据题意得:,即,解得:,则x+y1+10,故答案为0

14、【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键12、1、0、1【解析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案【详解】,解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.13、30【解析】根据角平分线的定义可得PBC=20,PCM=50,根据三角形外角性质即可求出P的度数.【详解】BP是ABC的平分线,CP是ACM的平分线,ABP=20,ACP=50,PBC=20,PCM=50,PBC+P=PCM

15、,P=PCM-PBC=50-20=30,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.14、1【解析】连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQx解直角三角形得到AP1,根据三角函数的定义即可得到结论【详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQxPDQ45,PDPQ,即1x,x1,AP1,tanABP1,故答案为:1【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称最短路线问题,正确的理解题意是解题的关键15、a(3a+

16、1)【解析】3a2+a=a(3a+1),故答案为a(3a+1)16、【解析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解APB【详解】把PAB绕B点顺时针旋转90,得PBC,则PABPBC,设PA=x,PB=2x,PC=3x,连PP,得等腰直角PBP,PP2=(2x)2+(2x)2=8x2,PPB=45又PC2=PP2+PC2,得PPC=90故APB=CPB=45+90=135故答案为135【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把PAB顺时针旋转90使得A与C点重合是解题的关键17、【解析】

17、分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题详解:从3,1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是: (3,1)、(3,0)、(3,1)、(3,3)、 (1,3)、(1,0)、(1,1)、(1,3)、 (0,3)、(0,1)、(0,1)、(0,3)、 (1,3)、(1,1)、(1,0)、(1,3)、 (3,3)、(3,1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(3,1),(1,

18、3),(3,1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:故答案为点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性三、解答题(共7小题,满分69分)18、 (1)PMPN, PMPN;(2)PMN是等腰直角三角形,理由详见解析;(3)【解析】(1)利用三角形的中位线得出PMCE,PNBD,进而判断出BDCE,即可得出结论,再利用三角形的中位线得出PMCE得出DPMDCA,最后用互余即可得出结论;(2)先判断出ABDACE,得出BDCE,同(1)的方法得出PMBD,PNBD,即可得出PMPN,同(1)的方法即可得出结论;(3)方法1

19、、先判断出MN最大时,PMN的面积最大,进而求出AN,AM,即可得出MN最大AM+AN,最后用面积公式即可得出结论方法2、先判断出BD最大时,PMN的面积最大,而BD最大是AB+AD14,即可【详解】解:(1)点P,N是BC,CD的中点,PNBD,PNBD,点P,M是CD,DE的中点,PMCE,PMCE,ABAC,ADAE,BDCE,PMPN,PNBD,DPNADC,PMCE,DPMDCA,BAC90,ADC+ACD90,MPNDPM+DPNDCA+ADC90,PMPN,故答案为:PMPN,PMPN,(2)由旋转知,BADCAE,ABAC,ADAE,ABDACE(SAS),ABDACE,BDC

20、E,同(1)的方法,利用三角形的中位线得,PNBD,PMCE,PMPN,PMN是等腰三角形,同(1)的方法得,PMCE,DPMDCE,同(1)的方法得,PNBD,PNCDBC,DPNDCB+PNCDCB+DBC,MPNDPM+DPNDCE+DCB+DBCBCE+DBCACB+ACE+DBCACB+ABD+DBCACB+ABC,BAC90,ACB+ABC90,MPN90,PMN是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,PMN是等腰直角三角形,MN最大时,PMN的面积最大,DEBC且DE在顶点A上面,MN最大AM+AN,连接AM,AN,在ADE中,ADAE4,DAE90,AM2,在

21、RtABC中,ABAC10,AN5,MN最大2+57,SPMN最大PM2MN2(7)2方法2、由(2)知,PMN是等腰直角三角形,PMPNBD,PM最大时,PMN面积最大,点D在BA的延长线上,BDAB+AD14,PM7,SPMN最大PM272【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.19、(1)证明见解析;(2)【解析】(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明ABC=90即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明AFDEFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,AB为O的直径,BDAC,D是

22、AC的中点,BC=AB,C=A45,ABC=90,BC是O的切线;(2)连接OD,由(1)可得AOD=90,O的半径为2, F为OA的中点,OF=1, BF=3,E=A,AFD=EFB,AFDEFB,即,.【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.20、(1);(2)2x1【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可【详解】(1)原式;(2)不等

23、式组整理得:, 则不等式组的解集为2x1【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.21、(1)y=x1+x;(1)y1y1=;(3)AAB为等边三角形,理由见解析;平面内存在点P,使得以点A、B、A、P为顶点的四边形是菱形,点P的坐标为(1,)、( )和(,1)【解析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1

24、-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A的坐标利用两点间的距离公式(勾股定理)可求出AB、AA、AB的值,由三者相等即可得出AAB为等边三角形;根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标综上即可得出结论【详解】(1)抛物线y=x1+bx+c的图象经过点(0,0)和(,0),解得:,抛

25、物线F的解析式为y=x1+x(1)将y=x+m代入y=x1+x,得:x1=m,解得:x1=,x1=,y1=+m,y1=+m,y1y1=(+m)(+m)=(m0)(3)m=,点A的坐标为(,),点B的坐标为(,1)点A是点A关于原点O的对称点,点A的坐标为(,)AAB为等边三角形,理由如下:A(,),B(,1),A(,),AA=,AB=,AB=,AA=AB=AB,AAB为等边三角形AAB为等边三角形,存在符合题意的点P,且以点A、B、A、P为顶点的菱形分三种情况,设点P的坐标为(x,y)(i)当AB为对角线时,有,解得,点P的坐标为(1,);(ii)当AB为对角线时,有,解得:,点P的坐标为(,

26、);(iii)当AA为对角线时,有,解得:,点P的坐标为(,1)综上所述:平面内存在点P,使得以点A、B、A、P为顶点的四边形是菱形,点P的坐标为(1,)、( )和(,1)【点睛】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)利用勾股定理(两点间的距离公式)求出AB、AA、AB的值;分AB为对角线、AB为对角线及AA为对角线三种情况求出点P的坐标22、(1)证明见解析;(2)BC=2CD,理由见解

27、析.【解析】分析:(1)利用矩形的性质,即可判定FAECDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD详解:(1)四边形ABCD是矩形,ABCD,FAE=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:CF平分BCD,DCE=45,CDE=90,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD点睛:本

28、题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的23、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6x4.【解析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(312x)米依题意可列方程x(312x)72,即x215x361解得

29、x13,x22又312x3,即x6,x=2(2)依题意,得8312x3解得6x4面积Sx(312x)2(x)2(6x4)当x时,S有最大值,S最大; 当x4时,S有最小值,S最小4(3122)5 (3)令x(312x)41,得x215x511解得x15,x21 x的取值范围是5x424、(1),; (2);(3).【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁