《湖北省黄冈市黄梅县2022-2023学年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省黄冈市黄梅县2022-2023学年中考数学最后一模试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()ABCD2如图,直线 AB 与 MNPQ 的四边所在直线分别交于 A、B、C、D,
2、则图中的相似三角形有( )A4 对 B5 对 C6 对 D7 对3如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,函数y=(k0)的图象经过点B,则k的值为()A12B32C32D364下列几何体中,俯视图为三角形的是( )ABCD5下列四个命题,正确的有()个有理数与无理数之和是有理数 有理数与无理数之和是无理数无理数与无理数之和是无理数 无理数与无理数之积是无理数A1B2C3D46下列交通标志是中心对称图形的为()ABCD7如果m的倒数是1,那么m2018等于()A1B1C2018D20188若ab0,则正比例函数y=ax与反比例函数y=在同一坐标系中的
3、大致图象可能是()ABCD9已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周设点运动的时间为,线段的长为表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )ABCD10在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线二、填空题(共7小题,每小题3分,满分21分)11如图,直线ab,正方形ABCD的顶点A、B分别在直线a、b上若273,则1 12如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,
4、且此时测得米的影长为米,则电线杆的高度为_米13等腰ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_秒14如图,ABC三边的中线AD,BE,CF的公共点G,若,则图中阴影部分面积是 .15化简=_16如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若OEC的面积为12,则k=_17如图,在ABC中,AB3+,B45,C105,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+P
5、B的最小值为_三、解答题(共7小题,满分69分)18(10分)如图,梯形ABCD中,ADBC,AEBC于E,ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F(1)求证:CD与O相切;(2)若BF=24,OE=5,求tanABC的值19(5分)如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且B=90,求:BAD的度数;四边形ABCD的面积(结果保留根号)20(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具不妨设该种品牌玩具的销售单价为x元
6、(x40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?21(10分)(1)计算:()1+(2018)04cos30(2)解不等式组:,并把它的解集在数轴上表示出来22(10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x2)个
7、羽毛球,供社区居民免费借用该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球设在A超市购买羽毛球拍和羽毛球的费用为yA(元),在B超市购买羽毛球拍和羽毛球的费用为yB(元)请解答下列问题:分别写出yA、yB与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案23(12分)如图,在RtABC中,过点C的直线MNAB,D为AB边上一点,过
8、点D作DEBC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=_时,四边形BECD是正方形.24(14分)有一个二次函数满足以下条件:函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);对称轴是x3;该函数有最小值是1(1)请根据以上信息求出二次函数表达式;(1)将该函数图象xx1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),结合画出的函数图象求x3+x4+
9、x5的取值范围参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】如图,连接AB,由圆周角定理,得C=ABO,在RtABO中,OA=3,OB=4,由勾股定理,得AB=5,故选D2、C【解析】由题意,AQNP,MNBQ,ACMDCN,CDNBDP,BPDBQA,ACMABQ,DCNABQ,ACMDBP,所以图中共有六对相似三角形故选C3、B【解析】解:O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,OA=5,ABOC,点B的坐标为(8,4),函数y=(k0)的图象经过点B,4=,得k=32.故选B.【点睛】本题主要考查菱形的性质和用待定
10、系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.4、C【解析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键5、A【解析】解:有理数与无理数的和一定是有理数,故本小题错误;有理数与无理数的和一定是无理数,故本小题正确;例如=0,0
11、是有理数,故本小题错误;例如()=2,2是有理数,故本小题错误故选A点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键6、C【解析】根据中心对称图形的定义即可解答【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意故选C【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合7、A【解析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是1,则m=-1,然后再代入m2018计算即可.【
12、详解】因为m的倒数是1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.8、D【解析】根据ab0及正比例函数与反比例函数图象的特点,可以从a0,b0和a0,b0两方面分类讨论得出答案【详解】解:ab0,分两种情况:(1)当a0,b0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a0,b0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质
13、,要掌握它们的性质才能灵活解题9、A【解析】解:分析题中所给函数图像,段,随的增大而增大,长度与点的运动时间成正比段,逐渐减小,到达最小值时又逐渐增大,排除、选项,段,逐渐减小直至为,排除选项故选【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图10、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条
14、件,无法证明相等的一组对边平行故选C二、填空题(共7小题,每小题3分,满分21分)11、107【解析】过C作da, 得到abd,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到1的度数【详解】过C作da, ab, abd,四边形ABCD是正方形,DCB=90, 2=73,6=90-2=17,bd, 3=6=17, 4=90-3=73, 5=180-4=107,ad, 1=5=107,故答案为107.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等解决问题的关键是作辅助线构造内错角12、(14+2)米【解析】过D作DEBC的延长线于E,连接AD
15、并延长交BC的延长线于F,根据直角三角形30角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可【详解】如图,过D作DEBC的延长线于E,连接AD并延长交BC的延长线于FCD=8,CD与地面成30角,DE=CD=8=4,根据勾股定理得:CE=41m杆的影长为2m,=,EF=2DE=24=8,BF=BC+CE+EF=20+4+8=(28+4)=,AB=(28+4)=14+2故答案为(14+2)【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB
16、的影长若全在水平地面上的长BF是解题的关键13、7秒或25秒【解析】考点:勾股定理;等腰三角形的性质专题:动点型;分类讨论分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:PAACPAAB,从而可得到运动的时间解答:解:如图,作ADBC,交BC于点D,BC=8cm,BD=CD=BC=4cm,AD=3,分两种情况:当点P运动t秒后有PAAC时,AP2=PD2+AD2=PC2-AC2,PD2+AD2=PC2-AC2,PD2+32=(PD+4)2-52PD=2.25,BP=4-2.25=1.75=0.25t,t=7秒,当点P运动t秒后有PAAB时,同理可
17、证得PD=2.25,BP=4+2.25=6.25=0.25t,t=25秒,点P运动的时间为7秒或25秒点评:本题利用了等腰三角形的性质和勾股定理求解14、4【解析】试题分析:由中线性质,可得AG=2GD,则,阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.15、x+1【解析】分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.详解:解:原式= =(x+1)(x1)=x+1,故答案为x+1点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.16、12【解析】设AD=a,则AB=OC=2a
18、,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作ENOC于点N,交AB于点M,则OA=MN=,已知OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明BMEONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得=k,解方程求得k值即可.【详解】设AD=a,则AB=OC=2a,点D在反比例函数y=的图象上,D(a,),OA=,过点E 作ENOC于点N,交AB于点M,则OA=MN=,OEC的面积为12,OC=2a,EN=,EM=MN-EN=-=;
19、设ON=x,则NC=BM=2a-x,ABOC,BMEONE,,即,解得x=,E(,),点E在在反比例函数y=的图象上,=k,解得k=,k0,k=12.故答案为:12.【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.17、【解析】如图,连接OD,BD,作DHAB于H,EGAB于G由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PBBD,推出PF+PB的最小值是线段BD的长【详解】如图,连接OD,BD,作DHAB于H,EGAB于G四边形ADEF是菱形,F,D关于直线AE对称,PF=PD,PF+PB=PA+PB,
20、PD+PBBD,PF+PB的最小值是线段BD的长,CAB=180-105-45=30,设AF=EF=AD=x,则DH=EG=x,FG=x,EGB=45,EGBG,EG=BG=x,x+x+x=3+,x=2,DH=1,BH=3,BD=,PF+PB的最小值为,故答案为【点睛】本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)【解析】试题分析:(1)过点O作OGDC,垂足为G先证明OAD=90,从而得到OAD=OGD=90,然后利用AAS可证明ADOGDO,则OA=OG=r,则DC
21、是O的切线;(2)连接OF,依据垂径定理可知BE=EF=1,在RtOEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在RtABE中,利用锐角三角函数的定义求解即可试题解析:(1)证明:过点O作OGDC,垂足为GADBC,AEBC于E,OAADOAD=OGD=90在ADO和GDO中,ADOGDOOA=OGDC是O的切线(2)如图所示:连接OFOABC,BE=EF= BF=1在RtOEF中,OE=5,EF=1,OF=,AE=OA+OE=13+5=2tanABC.【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键19、
22、(1);(2)【解析】(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出ACD的形状,进而可求出BAD的度数;(2)由(1)可知ABC和ADC是Rt,再根据S四边形ABCD=SABC+SADC即可得出结论【详解】解:(1)连接AC,如图所示:AB=BC=1,B=90AC=, 又AD=1,DC=, AD2AC2=3 CD2=()2=3即CD2=AD2+AC2DAC=90 AB=BC=1BAC=BCA=45BAD=135;(2)由(1)可知ABC和ADC是Rt,S四边形ABCD=SABC+SADC=11+1= .【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作
23、出辅助线,构造出直角三角形是解答此题的关键20、 (1) 1000x,10x2+1300x1;(2)50元或80元;(3)8640元.【解析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600(x40)x=1000x,销售利润w=(1000x)(x30)=10x2+1300x1(2)令10x2+1300x1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=10x2+1300x1转化成y=10(x65)2+12250,结合x的取值范围,求出最大利润【详解】解:(1)销售量y=600(x40)x=1000x,销售利润w=(1000x)(x30)=10x2+1300x
24、1故答案为: 1000x,10x2+1300x1(2)10x2+1300x1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润(3)根据题意得,解得:44x46 w=10x2+1300x1=10(x65)2+12250a=100,对称轴x=65,当44x46时,y随x增大而增大当x=46时,W最大值=8640(元)答:商场销售该品牌玩具获得的最大利润为8640元21、 (1)-3;(2).【解析】分析:(1)代入30角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,
25、并把解集规范的表示到数轴上即可.(1)原式= = -3.(2) 解不等式得: ,解不等式得:,不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30角的余弦函数值是本题解题的关键.22、解:(1) yA=27x+270,yB=30x+240;(2)当2x10时,到B超市购买划算,当x=10时,两家超市一样划算,当x10时在A超市购买划算;(3)先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球【解析】(1)根据购买费用=单价数量建立关系就可以表示出yA、yB的解析式;(2)分三种情况进行讨论,当yA=yB时,当yAyB时,当yAyB时,分别求
26、出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论【详解】解:(1)由题意,得yA=(1030+310x)0.9=27x+270;yB=1030+3(10x20)=30x+240;(2)当yA=yB时,27x+270=30x+240,得x=10;当yAyB时,27x+27030x+240,得x10;当yAyB时,27x+27030x+240,得x10当2x10时,到B超市购买划算,当x=10时,两家超市一样划算,当x10时在A超市购买划算(3)由题意知x=15,1510,选择A超市,yA=2715+270=675(元),先选择B超市购买10副羽毛球拍,送20
27、个羽毛球,然后在A超市购买剩下的羽毛球:(101520)30.9=351(元),共需要费用1030+351=651(元)651元675元,最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球【点睛】本题考查一次函数的应用,根据题意确列出函数关系式是本题的解题关键.23、(1)详见解析;(2)菱形;(3)当A=45,四边形BECD是正方形【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出CDB=90,再根据正方形的判定推出即可【详解】(1)DEBC,DFP=90
28、,ACB=90,DFB=ACB,DE/AC,MN/AB,四边形ADEC为平行四边形,CE=AD;(2)菱形,理由如下:在直角三角形ABC中,D为AB中点,BD=AD,CE=AD,BD=CE,MN/AB,BECD是平行四边形,ACB=90,D是AB中点,BD=CD,(斜边中线等于斜边一半)四边形BECD是菱形;(3)若D为AB中点,则当A=45时,四边形BECD是正方形,理由:A=45,ACB=90,ABC=45,四边形BECD是菱形,DC=DB,DBC=DCB=45,CDB=90,四边形BECD是菱形,四边形BECD是正方形,故答案为45.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、
29、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.24、(1)y=(x3)11;(1)11x3+x4+x59+1【解析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3x4x5的取值范围,易得直线与图象“G”要有3个交点时x3x4x5的取值范围【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,1)设二次函数表达式为:y=a(x3)11该图象过A(1,0)0=a(13)11,解得a=表达式为y=(x3)11(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,x3+x4+x511,当直线过y=(x3)11的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=(x3)1+1,令(x3)1+1=1时,解得x=3+1或x=31(舍去)x3+x4+x59+1综上所述11x3+x4+x59+1【点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用