《浙江省台州市台州市白云校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省台州市台州市白云校2022-2023学年中考数学最后冲刺模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1下列各式中,正确的是( )At5t5 = 2t5 Bt4+t2 = t 6 Ct3t4 = t12 Dt2t3 = t52关于x的方程3x+2a=x5的解是负数,则a的取值范围是()AaBaCaDa3如图,直线被直线所截,下列条件中能判定的是( )ABCD4关于x的方程x2+(k24)x+k+1=0的两个根互为相反数,则k值是()A1B2C2D25生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )Ax(x+1)=132Bx(x-1)=132Cx(x+1)=132Dx(x-1)=13226小明和小亮按如图所示
3、的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A小明不是胜就是输,所以小明胜的概率为B小明胜的概率是,所以输的概率是C两人出相同手势的概率为D小明胜的概率和小亮胜的概率一样7如图,有一张三角形纸片ABC,已知BCx,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )ABCD8若一个凸多边形的内角和为720,则这个多边形的边数为A4B5C6D79下列运算正确的是( )A=x5BC=D3+2 10为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图)估计该校男生的身高在169.5cm174.5cm之间的人数有(
4、)A12B48C72D9611一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()ABC4D2+12关于x的一元二次方程x22x+m=0有两个不相等的实数根,则实数m的取值范围是()Am3Bm3Cm3Dm3二、填空题:(本大题共6个小题,每小题4分,共24分)13中国古代的数学专著九章算术有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻互换其中一只,恰好一样重”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为_14已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是_(结果保留)15边长为3的正方形网格中,
5、O的圆心在格点上,半径为3,则tanAED=_16我们知道:1+3=4,1+3+5=9,1+3+5+7=16,观察下面的一列数:-1,2,,-3, 4,-5,6,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 17若二次函数yx24xk的最大值是9,则k_18当4x2时,函数y=(x+3)2+2的取值范围为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,在中,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分20(6分)如图1,抛物线y1=ax1x+c与x轴交于点A
6、和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式21(6分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.22(8分)如图,正六边形ABCDEF在正三
7、角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线23(8分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角为45,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角为30.已知树高EF=6米,求塔CD的高度(结果保留根号).24(10分)如图,点D为O上一点,点C在直径BA的延长线上,且CDA=CBD判断直线CD和O的位置关系,并说明理由过点B作O的切线BE交直线CD于点E,若AC=2,O的半径是3,求BE的长25(10分)先化简,再求值:x(x+1
8、)(x+1)(x1),其中x=126(12分)先化简,再求值:(x2y)2+(x+y)(x4y),其中x5,y27(12分)计算:(2)2+|3|20180参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.2、D【解析】先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【详解】解方程3x+2a=x5得x=,因为方程
9、的解为负数,所以0,解得:a.【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变3、C【解析】试题解析:A、由3=2=35,1=55推知13,故不能判定ABCD,故本选项错误;B、由3=2=45,1=55推知13,故不能判定ABCD,故本选项错误;C、由3=2=55,1=55推知1=3,故能判定ABCD,故本选项正确;D、由3=2=125,1=55推知13,故不能判定ABCD,故本选项错误;故选C4、D【解析】根据一元二次方程根与系数的关系列出方程求解即可【详解】设方程的两根分别为x1,x
10、1,x1+(k1-4)x+k-1=0的两实数根互为相反数,x1+x1,=-(k1-4)=0,解得k=1,当k=1,方程变为:x1+1=0,=-40,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,=110,方程有两个不相等的实数根;k=-1故选D【点睛】本题考查的是根与系数的关系x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1= ,x1x1= ,反过来也成立.5、B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.6、D【解析】利用概率公式,一一判断即可解决问题.【详解
11、】A、错误小明还有可能是平;B、错误、小明胜的概率是,所以输的概率是也是;C、错误两人出相同手势的概率为;D、正确小明胜的概率和小亮胜的概率一样,概率都是;故选D【点睛】本题考查列表法、树状图等知识用到的知识点为:概率=所求情况数与总情况数之比7、C【解析】根据全等三角形的判定定理进行判断【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,DECB+BDE,x+FECx+BDE,FECBDE,所以其对应边应该是BE和CF,而已知给的是BDFC3,所以不能判定两个小三角
12、形全等,故本选项符合题意;D、如图2,DECB+BDE,x+FECx+BDE,FECBDE,BDEC2,BC,BDECEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键8、C【解析】设这个多边形的边数为n,根据多边形的内角和定理得到(n2)180=720,然后解方程即可【详解】设这个多边形的边数为n,由多边形的内角和是720,根据多边形的内角和定理得(n2)180=720解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.
13、9、B【解析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. =x6,故错误;B. ,正确;C. =,故错误; D. 3+2 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.10、C【解析】解:根据图形,身高在169.5cm174.5cm之间的人数的百分比为:,该校男生的身高在169.5cm174.5cm之间的人数有30024%72(人)故选C11、B【解析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120,并且所走过的两路径相等,求出一个乘以2即可得到【详解】如图:BC=AB=AC=1,BCB=120,B点从
14、开始至结束所走过的路径长度为2弧BB=2.故选B12、A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得=(-2)2-4m0,求出m的取值范围即可详解:关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,=(-2)2-4m0,m3,故选A点睛:本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b2-4ac当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】设每只雀、燕的重量各为x两,y两,由题意得: 故答案是:或 14
15、、8【解析】根据圆锥的侧面积=底面周长母线长2公式即可求出【详解】圆锥体的底面半径为2,底面周长为2r=4,圆锥的侧面积=442=8故答案为:8【点睛】灵活运用圆的周长公式和扇形面积公式15、【解析】根据同弧或等弧所对的圆周角相等知AED=ABD,所以tanAED的值就是tanB的值.【详解】解: AED=ABD (同弧所对的圆周角相等),tanAED=tanB=.故答案为:.【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.16、2【解析】先求出19行有多少个数,再加3就
16、等于第20行第三个数是多少然后根据奇偶性来决定负正【详解】1行1个数,2行3个数,3行5个数,4行7个数,19行应有219-1=37个数到第19行一共有1+3+5+7+9+37=1919=1第20行第3个数的绝对值是1+3=2又2是偶数,故第20行第3个数是217、5【解析】y=(x2)2+4+k,二次函数y=x24x+k的最大值是9,4+k=9,解得:k=5,故答案为:5.18、-23y2【解析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4x2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论【详解】解:a=-1,抛物线的开口向下,故有最大值,对称
17、轴x=-3,当x=-3时y最大为2,当x=2时y最小为-23,函数y的取值范围为-23y2,故答案为:-23y2.【点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
18、EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键20、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,);(3)y=x+或y=【解析】(1)应用待定系数法求解析式;(1)设出点T坐标,表示TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与AMG全
19、等,分类讨论对应边相等的可能性即可【详解】解:(1)由已知,c=,将B(1,0)代入,得:a=0,解得a=,抛物线解析式为y1=x1- x+,抛物线y1平移后得到y1,且顶点为B(1,0),y1=(x1)1,即y1=-x1+ x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(3,0),C(0,),过点T作TEy轴于E,则TC1=TE1+CE1=11+()1=t1t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,当TC=AC时,t1t+=,解得:t1=,t1=;当TA=AC时,t1+16=,无解;当TA=TC时,t1t+=t1+16,解得t3=
20、;当点T坐标分别为(1,),(1,),(1,)时,TAC为等腰三角形;(3)如图1:设P(m,),则Q(m,),Q、R关于x=1对称R(1m,),当点P在直线l左侧时,PQ=1m,QR=11m,PQR与AMG全等,当PQ=GM且QR=AM时,m=0,P(0,),即点P、C重合,R(1,),由此求直线PR解析式为y=x+,当PQ=AM且QR=GM时,无解;当点P在直线l右侧时,同理:PQ=m1,QR=1m1,则P(1,),R(0,),PQ解析式为:y=;PR解析式为:y=x+或y=【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨
21、论的数学思想进行解题是关键21、(1);(2)或1.【解析】(1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.【详解】(1)当时,有,由方程,解得,即.由方程,解得,即.因为为线段上一点,所以.(2)解方程,得,即.解方程,得,即.当为线段靠近点的三等分点时,则,即,解得.当为线段靠近点的三等分点时,则,即,解得.综上可得,或1.【点睛】本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.22、(
22、1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):23、(6+2)米【解析】根据题意求出BAD=ADB=45,进而根据等腰直角三角形的性质求得FD,在RtPEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在RtPCG中,继而可求出CG的长度【详解】由题意可知BAD=ADB=45,FD=EF=6米,在RtPEH中,tan=,BF=5,PG=BD=BF+FD=5+6,tan= ,CG=(5+6)=5+2,CD=(6+2)米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角
23、形,利用三角函数的知识求解相关线段的长度24、解:(1)直线CD和O的位置关系是相切,理由见解析(2)BE=1【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得DAB+DBA=90,再由CDA=CBD可得CDA+ADO=90,从而得CDO=90,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可试题解析:(1)直线CD和O的位置关系是相切,理由是:连接OD,AB是O的直径,ADB=90,DAB+DBA=90,CDA=CBD,DAB+CDA=90,OD=OA,DAB=ADO,CDA+ADO=90,即O
24、DCE,直线CD是O的切线,即直线CD和O的位置关系是相切;(2)AC=2,O的半径是3,OC=2+3=5,OD=3,在RtCDO中,由勾股定理得:CD=4,CE切O于D,EB切O于B,DE=EB,CBE=90,设DE=EB=x,在RtCBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理25、x+1,2.【解析】先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.【详解】原式=x2+x(x21)=x2+xx2+1=x+1,
25、当x=1时,原式=2【点睛】本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.26、2x27xy,1【解析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.【详解】原式x24xy+4y2+x24xy+xy4y22x27xy,当x5,y时,原式5071【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.27、1【解析】根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.【详解】原式=1+313=1【点睛】本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.