江西婺源县重点达标名校2023年中考数学模试卷含解析.doc

上传人:lil****205 文档编号:88308396 上传时间:2023-04-25 格式:DOC 页数:16 大小:574KB
返回 下载 相关 举报
江西婺源县重点达标名校2023年中考数学模试卷含解析.doc_第1页
第1页 / 共16页
江西婺源县重点达标名校2023年中考数学模试卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《江西婺源县重点达标名校2023年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西婺源县重点达标名校2023年中考数学模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1sin60的倒数为( )A2BCD2下列选项中,能使关于x的一元二次方程ax24x+c=0一定有实数根的是()Aa0Ba=0Cc0Dc=03叶绿

2、体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米其中,0.00005用科学记数法表示为()A0.5104B5104C5105D501034已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,45如图所示,的顶点是正方形网格的格点,则的值为()ABCD6如图,在RtABC中,ACB90,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD7如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视

3、图改变D俯视图不变,左视图改变8计算|3|的结果是()A1 B5 C1 D59下列计算错误的是()Aaa=a2B2a+a=3aC(a3)2=a5Da3a1=a410一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )快车追上慢车需6小时;慢车比快车早出发2小时;快车速度为46km/h;慢车速度为46km/h; A、B两地相距828km;快车从A地出发到B地用了14小时A2个B3个C4个D5个二、填空题(共7小题,每小题3分,满分21分)1127的立方根为 12某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,

4、则依题意所列的方程是_13如图,RtABC纸片中,C=90,AC=6,BC=8,点D在边BC 上,以AD为折痕将ABD折叠得到ABD,AB与边BC交于点E若DEB为直角三角形,则BD的长是_14如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_15七边形的外角和等于_16(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_17在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_三、解答题(共7小题,满分69分)18(10分)今年,我国海关总署

5、严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)19(5分)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E求证:DE是O的切线;若DE=6cm,AE=3cm,求O的半径20(8分)如图,在四

6、边形ABCD中,AB=BC=1,CD=DA=1,且B=90,求:BAD的度数;四边形ABCD的面积(结果保留根号)21(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率22(10分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度

7、改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?23(12分)如图1,二次函数yax22ax3a(a0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C求抛物线的函数关系式;如图2,点E是y轴负半轴上一点,连接BE,将OBE绕平面内某一点旋转180,得到PMN(点P、M、N分别和点O、B、E对应)

8、,并且点M、N都在抛物线上,作MFx轴于点F,若线段MF:BF1:2,求点M、N的坐标;点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标24(14分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1 去括号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:的倒数是.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记

9、特殊角的三角函数值是解题的关键.2、D【解析】试题分析:根据题意得a1且=,解得且a1观察四个答案,只有c1一定满足条件,故选D考点:根的判别式;一元二次方程的定义3、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005,故选C.4、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(35-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.5、B【解析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角

10、函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为,BD=CD=,DBC=DCB=45,在中,则故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形6、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角

11、的性质,求出AACD是解本题的关键7、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形

12、中正方形的列数以及每列正方形的个数是解决本题的关键.8、B【解析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值【详解】原式 故选:B【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键9、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂10、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答【详解】解:两车在276km处相遇,此时快车行驶了4个小时,故错误慢车0时出

13、发,快车2时出发,故正确快车4个小时走了276km,可求出速度为69km/h,错误慢车6个小时走了276km,可求出速度为46km/h,正确慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确快车2时出发,14时到达,用了12小时,错误故答案选B【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】找到立方等于27的数即可解:11=27,27的立方根是1,故答案为1考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算12、100(1+x)2=121【解析】根据题意给出的等量关系即可求出答案

14、【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型13、5或1【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB=5,DB=DB,接下来分为BDE=90和BED=90,两种情况画出图形,设DB=DB=x,然后依据勾股定理列出关于x的方程求解即可【详解】RtABC纸片中,C=90,AC=6,BC=8,AB=5,以AD为折痕ABD折叠得到ABD,BD=DB,AB=AB=5如图1所示:当BDE=90时,过点B作BFAF,垂足为F设BD=DB=x,则AF=6+x,FB=8-x在

15、RtAFB中,由勾股定理得:AB5=AF5+FB5,即(6+x)5+(8-x)5=55解得:x1=5,x5=0(舍去)BD=5如图5所示:当BED=90时,C与点E重合AB=5,AC=6,BE=5设BD=DB=x,则CD=8-x在RtBDE中,DB5=DE5+BE5,即x5=(8-x)5+55解得:x=1BD=1综上所述,BD的长为5或114、1:1【解析】根据矩形性质得出AD=BC,ADBC,D=90,求出四边形HFCD是矩形,得出HFG的面积是CDDH=S矩形HFCD,推出SHFG=SDHG+SCFG,同理SHEF=SBEF+SAEH,即可得出答案【详解】连接HF,四边形ABCD为矩形,A

16、D=BC,ADBC,D=90H、F分别为AD、BC边的中点,DH=CF,DHCF,D=90,四边形HFCD是矩形,HFG的面积是CDDH=S矩形HFCD,即SHFG=SDHG+SCFG,同理SHEF=SBEF+SAEH,图中四个直角三角形面积之和与矩形EFGH的面积之比是1:1,故答案为1:1【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力15、360【解析】根据多边形的外角和等于360度即可求解【详解】解:七边形的外角和等于360故答案为360【点睛】本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于36016、3或1【解析】解:方程去

17、分母得:1+3(x1)=mx,整理得:(m3)x=2当整式方程无解时,m3=0,m=3;当整式方程的解为分式方程的增根时,x=1,m3=2,m=1综上所述:m的值为3或1故答案为3或117、2m【解析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决【详解】解:过点O作OMAB交AB与M,交弧AB于点E连接OA在RtOAM中:OA=5m,AM=AB=4m根据勾股定理可得OM=3m,则油的最大深度ME为5-3=2m【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题三、解答题(共7小题,满分

18、69分)18、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(7525)海里【解析】(1)过点B作BHCA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在RtABH中,根据三角函数可求AH,进一步得到AD的长【详解】解:(1)过点B作BHCA交CA的延长线于点H,MBC60,CBA30,NAD30,BAC120,BCA180BACCBA30,BHBCsinBCA15075(海里)答:B点到直线CA的距离是75海里;(2)BD75海里,BH75海里,DH75(海里),BAH180BAC60,在RtABH中,tanBAH,AH25,ADDHAH(75

19、25)(海里)答:执法船从A到D航行了(7525)海里【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键19、解:(1)证明见解析;(2)O的半径是7.5cm【解析】(1)连接OD,根据平行线的判断方法与性质可得ODE=DEM=90,且D在O上,故DE是O的切线(2)由直角三角形的特殊性质,可得AD的长,又有ACDADE根据相似三角形的性质列出比例式,代入数据即可求得圆的半径【详解】(1)证明:连接ODOA=OD,OAD=ODAOAD=DAE,ODA=DAEDOMNDEMN,ODE=DEM=90即ODDED

20、在O上,OD为O的半径,DE是O的切线(2)解:AED=90,DE=6,AE=3,连接CDAC是O的直径,ADC=AED=90CAD=DAE,ACDADE则AC=15(cm)O的半径是7.5cm考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质20、(1);(2)【解析】(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出ACD的形状,进而可求出BAD的度数;(2)由(1)可知ABC和ADC是Rt,再根据S四边形ABCD=SABC+SADC即可得出结论【详解】解:(1)连接AC,如图所示:AB=BC=1,B=90AC=, 又AD=1,DC=, AD2AC2

21、=3 CD2=()2=3即CD2=AD2+AC2DAC=90 AB=BC=1BAC=BCA=45BAD=135;(2)由(1)可知ABC和ADC是Rt,S四边形ABCD=SABC+SADC=11+1= .【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键21、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)(2)用表格列出所有可能的结果: 第二次第一次红球1红球2白球黑

22、球红球1(红球1,红球2)(红球1,白球)(红球1,黑球)红球2(红球2,红球1)(红球2,白球)(红球2,黑球)白球(白球,红球1)(白球,红球2)(白球,黑球)黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能P(两次都摸到红球)=考点:概率统计22、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因

23、此由(2)可列方程【详解】(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、Q两点相遇前相距3cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式23、

24、(1)(1,4a);(2)y=x2+2x+3;M(,)、N(,);点Q的坐标为(1,4+2)或(1,42)【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标(2)以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出ACD是个直角三角形,且ACD90,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值将OBE绕平面内某一点旋转180得到PMN,说明了PM正好和x轴平行,且PMOB1,所以求M、N的坐标关键是求出点M的坐标;首先根据的函数解析式设出M点的坐标,然后根据题干条件:BF2MF

25、作为等量关系进行解答即可设Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出CDQ45,那么QGD为等腰直角三角形,即QD 2QG 2QB ,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标详解:(1)y=ax22ax3a=a(x1)24a,D(1,4a)(2)以AD为直径的圆经过点C,ACD为直角三角形,且ACD=90;由y=ax22ax3a=a(x3)(x+1)知,A(3,0)、B(1,0)、C(0,3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=1

26、6a2+4,化简,得:a2=1,由a0,得:a=1,a=1,抛物线的解析式:y=x2+2x+3,D(1,4)将OBE绕平面内某一点旋转180得到PMN,PMx轴,且PM=OB=1;设M(x,x2+2x+3),则OF=x,MF=x2+2x+3,BF=OF+OB=x+1;BF=2MF,x+1=2(x2+2x+3),化简,得:2x23x5=0解得:x1=1(舍去)、x2=.M(,)、N(,)设Q与直线CD的切点为G,连接QG,过C作CHQD于H,如下图:C(0,3)、D(1,4),CH=DH=1,即CHD是等腰直角三角形,QGD也是等腰直角三角形,即:QD2=2QG2;设Q(1,b),则QD=4b,

27、QG2=QB2=b2+4;得:(4b)2=2(b2+4),化简,得:b2+8b8=0,解得:b=42;即点Q的坐标为(1,)或(1,)点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和Q半径间的数量关系是解题题目的关键24、(1)错误步骤在第步(2)x4.【解析】(1)第步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可【详解】解:(1)方程两边同乘6,得3x2(x1)6 去括号,得3x2x+26 错误步骤在第步(2)方程两边同乘6,得3x2(x1)6去括号,得3x2x+26合并同类项,得x+26解得x4原方程的解为x4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁