浙江省杭州市余杭区部分学校2023年高考全国统考预测密卷数学试卷含解析.doc

上传人:lil****205 文档编号:88308395 上传时间:2023-04-25 格式:DOC 页数:17 大小:1.57MB
返回 下载 相关 举报
浙江省杭州市余杭区部分学校2023年高考全国统考预测密卷数学试卷含解析.doc_第1页
第1页 / 共17页
浙江省杭州市余杭区部分学校2023年高考全国统考预测密卷数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《浙江省杭州市余杭区部分学校2023年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市余杭区部分学校2023年高考全国统考预测密卷数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若时,恒成立,则实数的值为( )ABCD2某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )ABCD3已知i为虚数单位,则( )ABCD4连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,

2、双曲线的离心率为( )ABCD5已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D46已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD7已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则8中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加

3、最显著B从2014年到2018年这5年,高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列9ABCD10若,则( )ABCD11已知,若,则向量在向量方向的投影为( )ABCD12已知ab0,c1,则下列各式成立的是()AsinasinbBcacbCacbcD二、填空题:本题共4小题,每小题5分,共20分。13已知,若,则_.14在中,是的角平分线,设,则实数的取值范围是_.15已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为_.16抛物线的焦点到准线的距离为 三、解答题:共70分。

4、解答应写出文字说明、证明过程或演算步骤。17(12分)在,这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,_,是否存在正整数,使得成立?18(12分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.19(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系20(12分)已知函数.(1)讨论的单调性;(2)

5、若函数在上存在两个极值点,且,证明.21(12分)已知等差数列中,数列的前项和.(1)求;(2)若,求的前项和.22(10分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求和的普通方程;(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得故选:D【点睛】本题主要考查函数的图象的综合应用和

6、函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.2、D【解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.3、A【解析】根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.4、D【解析】先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从

7、而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,离心率,故选:D.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.5、A【解析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A【点睛】本题主要考查双曲线、抛

8、物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平6、D【解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.7、C【解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满

9、足,b,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.8、D【解析】由折线图逐项分析即可求解【详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题9、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题10、C【解析】利用指数函数和对数函数的单调性比较、三个数与和的大小关系,进而可得出、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上

10、的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.11、B【解析】由,再由向量在向量方向的投影为化简运算即可【详解】, 向量在向量方向的投影为.故选:B.【点睛】本题考查向量投影的几何意义,属于基础题12、B【解析】根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为ycx为增函数,且ab,所以cacb,正确对C,因为yxc为增函数,故 ,错误;对D, 因为在为减函数,故 ,错误故选B【点睛】本题考查了不等

11、式的基本性质以及指数函数的单调性,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由题意先求得的值,可得,再令,可得结论【详解】已知,令,可得,故答案为:1【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题14、【解析】设,由,用面积公式表示面积可得到,利用,即得解.【详解】设,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.15、【解析】构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及

12、奇偶性化简不等式,解得结果.【详解】依题意,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.16、【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】根据等差数列性质及、,可求得等差数列的通项公式,由即可求得的值;根据等式,变形可得,分别讨论取中的一个,结合等比数列通项公式代入化简,检验是否存在正整数的值即可.【详解】在等差数列中,公差,若存在正整数,使得

13、成立,即成立,设正数等比数列的公比为的公比为,若选,当时,满足成立.若选,方程无正整数解,不存在正整数使得成立.若选,解得或(舍去),当时,满足成立.【点睛】本题考查了等差数列通项公式的求法,等比数列通项公式及前n项和公式的应用,递推公式的简单应用,补充条件后求参数的值,属于中档题.18、(1)(2)证明见解析【解析】(1)根据条件可得,进而得到,即可得到椭圆方程;(2)设直线的方程为,联立,分别表示出直线和直线斜率,相加利用根与系数关系即可得到.【详解】解:(1)圆与有且仅有两个交点且都在轴上,所以,又,解得,故椭圆的方程为;(2)设直线的方程为,联立,整理可得,则,解得,设点,则,所以,故

14、直线与直线的斜率互为相反数.【点睛】本题考查直线与椭圆的位置关系,涉及椭圆的几何性质,关键是求出椭圆的标准方程,属于中档题19、直线与圆C相切【解析】首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系【详解】直线为参数),转换为直角坐标方程为圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离直线与圆C相切【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型20、(1)若,则在定义域内递增;若,则在上单调递增,在上单调

15、递减(2)证明见解析【解析】(1),分,讨论即可;(2)由题可得到,故只需证,即,采用换元法,转化为函数的最值问题来处理.【详解】由已知,若,则在定义域内递增;若,则在上单调递增,在上单调递减.(2)由题意,对求导可得从而,是的两个变号零点,因此下证:,即证令,即证:,对求导可得,因为故,所以在上单调递减,而,从而所以在单调递增,所以,即于是【点睛】本题考查利用导数研究函数的单调性以及证明不等式,考查学生逻辑推理能力、转化与化归能力,是一道有一定难度的压轴题.21、(1),;(2).【解析】(1)由条件得出方程组 ,可求得的通项,当时,可得,当时,得出是以1为首项,2为公比的等比数列,可求得的

16、通项;(2)由(1)可知,分n为偶数和n为奇数分别求得.【详解】(1)由条件知, ,当时,即,当时,是以1为首项,2为公比的等比数列, ;(2)由(1)可知,当n为偶数时, 当n为奇数时, 综上,【点睛】本题考查等差数列和等比数列的通项的求得,以及其前n项和,注意分n为偶数和n为奇数两种情况分别求得其数列的和,属于中档题.22、(1)曲线的普通方程为:;曲线的普通方程为:(2)【解析】(1)消去曲线参数方程中的参数,求得和的普通方程.(2)设出过原点的直线的极坐标方程,代入曲线的极坐标方程,求得的表达式,结合三角函数值域的求法,求得的最小值.【详解】(1)曲线的普通方程为:;曲线的普通方程为:.(2)设过原点的直线的极坐标方程为;由得,所以曲线的极坐标方程为在曲线中,.由得曲线的极坐标方程为,所以而到直线与曲线的交点的距离为,因此,即的最小值为.【点睛】本小题主要考查参数方程化为普通方程,考查直角坐标方程化为极坐标方程,考查极坐标系下距离的有关计算,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁