湖北省鄂州市城南新区吴都中学2022-2023学年中考数学猜题卷含解析.doc

上传人:lil****205 文档编号:88308377 上传时间:2023-04-25 格式:DOC 页数:13 大小:374.50KB
返回 下载 相关 举报
湖北省鄂州市城南新区吴都中学2022-2023学年中考数学猜题卷含解析.doc_第1页
第1页 / 共13页
湖北省鄂州市城南新区吴都中学2022-2023学年中考数学猜题卷含解析.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《湖北省鄂州市城南新区吴都中学2022-2023学年中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省鄂州市城南新区吴都中学2022-2023学年中考数学猜题卷含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在ABC中,点D是边AB上的一点,

2、ADCACB,AD2,BD6,则边AC的长为()A2B4C6D82如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,GEF=90,则GF的长为( )A2B3C4D53如图,等腰ABC中,ABAC10,BC6,直线MN垂直平分AB交AC于D,连接BD,则BCD的周长等于()A13B14C15D164(2011雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )A(3,4) B(3,4)C(4,3) D(3,4)5的相反数是AB2CD6如图所示,若将ABO绕点O顺时针旋转180后得到A1B1O,则A点的对应点A1点的坐标是()A(3,2)B(

3、3,2)C(2,3)D(2,3)7下列运算结果正确的是()Aa3+a4=a7Ba4a3=aCa3a2=2a3D(a3)3=a68如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A1BCD9如图,在菱形ABCD中,M,N分别在AB,CD上,且AMCN,MN与AC交于点O,连接BO若DAC26,则OBC的度数为()A54B64C74D2610袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球下列事件是必然事件的是( )A摸出的三个球中

4、至少有一个球是黑球B摸出的三个球中至少有一个球是白球C摸出的三个球中至少有两个球是黑球D摸出的三个球中至少有两个球是白球二、填空题(共7小题,每小题3分,满分21分)11在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_12因式分解:9a212a+4_13不等式52x1的解集为_14计算2x3x2的结果是_15如果关于x的方程x2+2axb2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_16分式有意义时,x的取值范围是_17观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是

5、_(用含n的代数式表示)三、解答题(共7小题,满分69分)18(10分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201519(5分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进

6、节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?20(8分)先化简,再求值:,其中x=21(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22(10分

7、)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是 人,补全频数分布直方图,扇形图中m ;(2)本次调查数据中的中位数落在 组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?23(12分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间小丽与小杰整理各自样本数据,如下表所示时间段(小时/周)小丽抽样

8、(人数)小杰抽样(人数)01622121010231663482(1)你认为哪位学生抽取的样本不合理?请说明理由专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.24(14分)如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE,求tanABD的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】证明ADCACB,根据相似三角形的性质可推导得出AC2=ADAB,由此

9、即可解决问题.【详解】A=A,ADC=ACB,ADCACB,AC2=ADAB=28=16,AC0,AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.2、B【解析】四边形ABCD是正方形,A=B=90,AGE+AEG=90,BFE+FEB=90,GEF=90,GEA+FEB=90,AGE=FEB,AEG=EFB,AEGBFE,又AE=BE,AE2=AGBF=2,AE=(舍负),GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是

10、证明AEGBFE3、D【解析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案【详解】解:MN是线段AB的垂直平分线,ADBD,ABAC10,BD+CDAD+CDAC10,BCD的周长AC+BC10+616,故选D【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用4、A【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,点P的坐标为(3,4)故选A5、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题

11、考查求相反数,熟记相反数的性质是解题的关键 .6、A【解析】由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知, 点A与点A1关于原点成中心对称,点A的坐标是(3,2),点A关于点O的对称点A点的坐标是(3,2)故选A【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.7、B【解析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可【详解】A. a3+a4a7 ,不是同类项,不能合并,本选项错误; B. a4a3=

12、a4-3=a;,本选项正确; C. a3a2=a5;,本选项错误; D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单8、C【解析】由题意知:AB=BE=6,BD=ADAB=2(图2中),AD=ABBD=4(图3中);CEAB,ECFADF,得,即DF=2CF,所以CF:CD=1:3,故选C【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.9、B【解析】根据菱形的性质以及AMCN,利用ASA可得AMOCNO,可得AOCO,然后可得BOAC,继而可求得OBC的度数【详

13、解】四边形ABCD为菱形,ABCD,ABBC,MAONCO,AMOCNO,在AMO和CNO中,AMOCNO(ASA),AOCO,ABBC,BOAC,BOC90,DAC26,BCADAC26,OBC902664故选B【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质10、A【解析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误故选A二、填空题(共7小题,每小题3分,满分21分)11、【解析】摸三次有可能有:红红红、红红蓝、

14、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.故答案是:.12、(3a1)1【解析】直接利用完全平方公式分解因式得出答案【详解】9a1-11a+4=(3a-1)1故答案是:(3a1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键13、x1【解析】根据不等式的解法解答.【详解】解:, .故答案为【点睛】此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.14、【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3x2=2x3+2=2x5.故

15、答案为:2x515、1【解析】根据根的判别式求出=0,求出a1+b1=1,根据完全平方公式求出即可【详解】解:关于x的方程x1+1ax-b1+1=0有两个相等的实数根,=(1a)1-41(-b1+1)=0,即a1+b1=1,常数a与b互为倒数,ab=1,(a+b)1=a1+b1+1ab=1+31=4,a+b=1,故答案为1【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键16、x1【解析】要使代数式有意义时,必有1x2,可解得x的范围【详解】根据题意得:1x2,解得:x1故答案为x1【点睛】考查了分式和二次根式有意义的条件二次根式有意义,被开方数为非负数

16、,分式有意义,分母不为217、3n+1【解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律【详解】解:由题意可知:每1个都比前一个多出了3个“”,第n个图案中共有“”为:4+3(n1)3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型三、解答题(共7小题,满分69分)18、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(60

17、0-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20x+15(600-x) =5x+9000,y关于x的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增大而增大,当x=360时,y有最小

18、值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利润为9625元 19、甲、乙两种节能灯分别购进40、60只;商场获利1300元【解析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得,答:甲、乙两种节能灯分别购进40、60只(2)商场获利元,答:商场获利1300元【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是

19、求出两种节能灯的数量20、1+ 【解析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式 当时,原式=【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.21、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇【解析】试题分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函

20、数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330240)60=1.5(千米/分);(3)设L1为 把点(0,330),(60,240)代入得 所以 设L2为 把点(60,60)代入得 所以 (4)当时, 330150120=60(千米);所以2小时后,两车相距60千米;(5)当时, 解得 即行驶132分钟,A、B两车相遇22、(1)16、84;(2)C;(3)该校4500名学生中“1分钟跳绳”

21、成绩为优秀的大约有3000(人)【解析】(1)根据百分比所长人数总人数,圆心角百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【详解】(1)由题意总人数人,D组人数人;B组的圆心角为;(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人【点睛】本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.23、(1)小丽;(2)80【解析】解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表

22、性(2)答:该校全体初二学生中有80名同学应适当减少上网的时间24、(1)90;(1)证明见解析;(3)1【解析】(1)根据圆周角定理即可得CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证ODF=ODC+FDC=OCD+DCF=90,即可判定DF是O的切线;(3)根据已知条件易证CDEADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tanABD的值即可【详解】解:(1)解:对角线AC为O的直径,ADC=90,EDC=90;(1)证明:连接DO,EDC=90,F是EC的中点,DF=FC,FDC=FCD,OD=OC,OCD=ODC,OCF=90,ODF=ODC+FDC=OCD+DCF=90,DF是O的切线;(3)解:如图所示:可得ABD=ACD,E+DCE=90,DCA+DCE=90,DCA=E,又ADC=CDE=90,CDEADC,DC1=ADDEAC=1DE,设DE=x,则AC=1x,则AC1AD1=ADDE,期(1x)1AD1=ADx,整理得:AD1+ADx10x1=0,解得:AD=4x或4.5x(负数舍去),则DC=,故tanABD=tanACD=

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁