温州市育英学校2023年中考冲刺卷数学试题含解析.doc

上传人:lil****205 文档编号:88308336 上传时间:2023-04-25 格式:DOC 页数:19 大小:687KB
返回 下载 相关 举报
温州市育英学校2023年中考冲刺卷数学试题含解析.doc_第1页
第1页 / 共19页
温州市育英学校2023年中考冲刺卷数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《温州市育英学校2023年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《温州市育英学校2023年中考冲刺卷数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,P为O外一点,PA、PB分别切O于点A、B,CD切O于点E,分别交PA、PB于点C、D,若PA6,则PCD的周长为()A8B6C12D102舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应

2、表示为()A4.9951011B49.951010C0.49951011D4.99510103如图,AD,CE分别是ABC的中线和角平分线若AB=AC,CAD=20,则ACE的度数是()A20B35C40D704已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A中位数不相等,方差不相等B平均数相等,方差不相等C中位数不相等,平均数相等D平均数不相等,方差相等5下列生态环保标志中,是中心对称图形的是()A B C D6如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB延长线上,连接AD下列结论一定正确的是()AABDEBCBECCADBCDADBC7下列一元二次

3、方程中,有两个不相等实数根的是()Ax2+6x+9=0Bx2=xCx2+3=2xD(x1)2+1=08已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;b0;2c3bn(an+b)(n1),其中正确的结论有( )A2个B3个C4个D5个9某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD10下列运算正确的是()Aaa2a2B(ab)2abC31D11下列图形中,是轴对称图形但不是中心对称图形的是()A直角梯形 B平行四边形 C矩形 D正五边形12三个等边三角形的摆放位置如图,

4、若360,则12的度数为( ) A90B120C270D360二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,E是ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=_14如图,已知ABCD,=_15如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm16如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿OAB路线向终点B匀速运动,动点N

5、从O点开始,以每秒2个单位长度的速度沿OCBA路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t0),OMN的面积为S则:AB的长是_,BC的长是_,当t3时,S的值是_17若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_18关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) (1)解方程组(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求

6、的最小值及取得最小值时点的坐标.20(6分)观察下列等式:15+4=32;26+4=42;37+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立21(6分)已知:如图,四边形ABCD中,ADBC,AD=CD,E是对角线BD上一点,且EA=EC(1)求证:四边形ABCD是菱形;(2)如果BDC=30,DE=2,EC=3,求CD的长22(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费

7、255元该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?23(8分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.(1)求一次函数和反比例函数的表达式;(2)观察图象:当时,比较. 24(10分)(1)观察猜想如图点B、A、C在同一条直线上,DBBC,ECBC且DAE=90,AD=AE,则BC、BD、CE之间的数量关系为_;(2)问题解决如图,在RtABC中,ABC=90,CB=4,AB=2,以AC为直角边向外作等腰RtD

8、AC,连结BD,求BD的长;(3)拓展延伸如图,在四边形ABCD中,ABC=ADC=90,CB=4,AB=2,DC=DA,请直接写出BD的长25(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式(3)登山多长时间时,甲、乙两人距地面的高度差为50米?26(12分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动

9、,到D停止;点Q从D点出发,沿路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?27(12分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34,45,其中点O,A,B在同一条直线上(1)求A,B两点间的距离(结果精确到0.

10、1km)(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km)(参考数据:sin34=0.56,cos34=0.83,tan34=0.1)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】由切线长定理可求得PAPB,ACCE,BDED,则可求得答案【详解】PA、PB分别切O于点A、B,CD切O于点E,PAPB6,ACEC,BDED,PC+CD+PDPC+CE+DE+PDPA+AC+PD+BDPA+PB6+612,即PCD的周长为12,故选:C【点睛】本

11、题主要考查切线的性质,利用切线长定理求得PAPB、ACCE和BDED是解题的关键2、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】将499.5亿用科学记数法表示为:4.9951故选D【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、B【解析】先根据等腰三角形的性质以及三角形内角和定理求出CAB=2CAD=40,B=ACB=(

12、180-CAB)=70再利用角平分线定义即可得出ACE=ACB=35【详解】AD是ABC的中线,AB=AC,CAD=20,CAB=2CAD=40,B=ACB=(180-CAB)=70CE是ABC的角平分线,ACE=ACB=35故选B【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出ACB=70是解题的关键4、D【解析】分别利用平均数以及方差和中位数的定义分析,进而求出答案【详解】2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: (23)2+(33)2+(34)2= ;3、4、5的

13、平均数为:(3+4+5)=4,中位数是4,方差为: (34)2+(44)2+(54)2= ;故中位数不相等,方差相等故选:D【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.5、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形6、C【解析】根据旋转的性质得,ABDCBE=60, EC, 则ABD为等边三角形,即 ADAB=BD,得ADB=60因为ABDCBE=60,则CBD=60,所以,ADB=CBD,得ADBC.故选

14、C.7、B【解析】分析:根据一元二次方程根的判别式判断即可详解:A、x2+6x+9=0.=62-49=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.=(-1)2-410=10.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.=(-2)2-413=-80,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根8、B【解析】观察图象可知a0

15、,b0,c0,由此即可判定;当x=1时,y=ab+c由此可判定;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,由此可判定;当x=3时函数值小于0,即y=9a+3b+c0,且x= =1,可得a=,代入y=9a+3b+c0即可判定;当x=1时,y的值最大此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定.【详解】由图象可知:a0,b0,c0,abc0,故此选项错误;当x=1时,y=ab+c0,即ba+c,故此选项错误;由对称知,当x=2时,函数值大于0,即y=4a+2b+c0,故此选项正确;当x=3时函数值小于0,y=9a+3b+c0,且x=1即a=,代入得9()+

16、3b+c0,得2c3b,故此选项正确;当x=1时,y的值最大此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+can2+bn+c,故a+ban2+bn,即a+bn(an+b),故此选项正确正确故选B【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键9、A【解析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.10、C【解析】根据同底数幂的乘法法则对A进行判断;根据积的乘方

17、对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断【详解】解:A、原式a3,所以A选项错误;B、原式a2b2,所以B选项错误;C、原式,所以C选项正确;D、原式2,所以D选项错误故选:C【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变也考查了整式的运算11、D【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解详解:A直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误; B平行四边形不是轴对称图形,是中心对称

18、图形,故此选项错误; C矩形是轴对称图形,也是中心对称图形,故此选项错误; D正五边形是轴对称图形,不是中心对称图形,故此选项正确 故选D点睛:本题考查了轴对称图形和中心对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180后与原图形重合12、B【解析】先根据图中是三个等边三角形可知三角形各内角等于60,用1,2,3表示出ABC各角的度数,再根据三角形内角和定理即可得出结论【详解】图中是三个等边三角形,3=60,ABC=180-60-60=60,ACB=180-60-2=120-2,BAC=180-60-1=120-1,ABC+ACB

19、+BAC=180,60+(120-2)+(120-1)=180,1+2=120故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60是解答此题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、4【解析】AE=ED,AE+ED=AD,ED=AD,四边形ABCD是平行四边形,AD=BC,AD/BC,DEFBCF,DF:BF=DE:BC=2:3,DF+BF=BD=10,DF=4,故答案为4.14、85【解析】如图,过F作EFAB,而ABCD,ABCDEF,ABF+BFE=180,EFC=C,=180ABF+C=180120+25=85故答案为85.15、4【解析】已

20、知弧长即已知围成的圆锥的底面半径的长是6cm,这样就求出底面圆的半径扇形的半径为5cm就是圆锥的母线长是5cm就可以根据勾股定理求出圆锥的高【详解】设底面圆的半径是r,则2r=6,r=3cm,圆锥的高=4cm故答案为4.16、10, 1, 1 【解析】作CDx轴于D,CEOB于E,由勾股定理得出AB10,OC1,求出BEOBOE4,得出OEBE,由线段垂直平分线的性质得出BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,由三角形面积公式即可得出OMN的面积【详解】解:作CDx轴于D,CEOB于E,如图所示:由题意得:OA1,OB8,AOB90,AB10;点C的坐标(2,4

21、),OC1,OE4,BEOBOE4,OEBE,BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,OMN的面积S341;故答案为:10,1,1【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键17、1【解析】联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值【详解】联立得:,2+,得:10x=20,解得:x=2,将x=2代入,得:1-y=1,解得:y=0,则,将x=2、y=0代入,得:,解得:,则mn=1,故答案为1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方

22、程都成立的未知数的值18、k【解析】由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围【详解】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,0,即(2k+1)2-4(k2+1)0,解得k,故答案为k【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)当坐标为时,取得最小值为.【解析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值【详解】解

23、:(1)得:解得:把代入得,则方程组的解为(2 )由题意得:,当坐标为时,取得最小值为.【点睛】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键20、610+4=82 4852+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:610+4=82,故答案为610+4=82;(2)由题意可得,4852+4=502,故答案为4852+4;(3)第n个等式是:n(n+4)+4=(n+2)2,

24、证明:n(n+4)+4=n2+4n+4=(n+2)2,n(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法21、(1)证明见解析;(2)CD的长为2【解析】(1)首先证得ADECDE,由全等三角形的性质可得ADE=CDE,由ADBC可得ADE=CBD,易得CDB=CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EFCD于F,在RtDEF中,根据30的性质和勾股定理可求出EF和DF的长,在RtCEF中,根据勾股定理可求出CF的长,从

25、而可求CD的长.【详解】证明:(1)在ADE与CDE中,ADECDE(SSS),ADE=CDE,ADBC,ADE=CBD,CDE=CBD,BC=CD,AD=CD,BC=AD,四边形ABCD为平行四边形,AD=CD,四边形ABCD是菱形;(2)作EFCD于F.BDC=30,DE=2,EF=1,DF=,CE=3,CF=2,CD=2+.【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30的直角三角形的性质,勾股定理.证明AD=BC是解(1)的关键,作EFCD于F,构造直角三角形是解(2)的关键.22、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)

26、最多可以购进1筒甲种羽毛球【解析】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50m)筒,根据总价单价数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论【详解】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依题意,得:,解得:答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元(2

27、)设购进甲种羽毛球m筒,则购进乙种羽毛球(50m)筒,依题意,得:60m+45(50m)2550,解得:m1答:最多可以购进1筒甲种羽毛球【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式23、(1);(2)【解析】(1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由ODC与BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函数与反比例函数的解析式;(2)以A点为分界点,直接观察函数图象的高低即可知道答案【详解】解:(1)对于一次函数y=kx-2,令x

28、=0,则y=-2,即D(0,-2),OD=2,ABx轴于B, ,AB=1,BC=2,OC=4,OB=6,C(4,0),A(6,1)将C点坐标代入y=kx-2得4k-2=0,k=,一次函数解析式为y=x-2;将A点坐标代入反比例函数解析式得m=6,反比例函数解析式为y=;(2)由函数图象可知:当0x6时,y1y2;当x=6时,y1=y2;当x6时,y1y2;【点睛】本题考查了反比例函数与一次函数的交点问题熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握24、(1)BC=BD+CE,(2);(3). 【解析】(1)证明ADBEAC,根据全

29、等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;(2)过D作DEAB,交BA的延长线于E,证明ABCDEA,得到DE=AB=2,AE=BC=4,RtBDE中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DEBC于E,作DFAB于F,证明CEDAFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出的值,根据勾股定理即可求出BD的长.【详解】解:(1)观察猜想结论: BC=BD+CE,理由是:如图,B=90,DAE=90,D+DAB=DAB+EAC=90,D=EAC,B=C=90,AD=AE,

30、ADBEAC,BD=AC,EC=AB,BC=AB+AC=BD+CE;(2)问题解决如图,过D作DEAB,交BA的延长线于E,由(1)同理得:ABCDEA,DE=AB=2,AE=BC=4,RtBDE中,BE=6,由勾股定理得: (3)拓展延伸如图,过D作DEBC于E,作DFAB于F,同理得:CEDAFD,CE=AF,ED=DF,设AF=x,DF=y,则,解得: BF=2+1=3,DF=3,由勾股定理得: 【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.25、(1)10;1;(2);(3)4分钟、9分钟或3分钟【解析】(1)根据速度=

31、高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(10-100)20=10(米/分钟),b=312=1故答案为:10;1(2)当0x2时,y=3x;当x2时,y=1+103(x-2)=1x-1当y=1x

32、-1=10时,x=2乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度时间找出y关于x的函数关系式;(3)将两函数关系式做差找出

33、关于x的一元一次方程26、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程【详解】(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、Q两点相遇前相距3

34、cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式27、(1)1.7km;(2)8.9km;【解析】(1)根据锐角三角函数可以表示出OA和OB的长,从而可以求得AB的长;(2)根据锐角三角函数可以表示出CD,从而可以求得此时雷达站C和运载火箭D两点间的距离【详解】解:(1)由题意可得,BOC=AOC=90,ACO=34,BCO=45,OC=5km,AO=OCtan34,BO=OCtan45,AB=OBOA=OCtan45OCtan34=OC(tan45tan34)=5(10.1)1.7km,即A,B两点间的距离是1.7km;(2)由已知可得,DOC=90,OC=5km,DCO=56,cosDCO= 即 sin34=cos56, 解得,CD8.9答:此时雷达站C和运载火箭D两点间的距离是8.9km【点睛】本题考查解直角三角形的应用仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁