泉州市重点中学2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc

上传人:lil****205 文档编号:88308146 上传时间:2023-04-25 格式:DOC 页数:22 大小:938KB
返回 下载 相关 举报
泉州市重点中学2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共22页
泉州市重点中学2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《泉州市重点中学2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《泉州市重点中学2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1已知O的半径为3,圆心O到直线L的距离为2,则直线L与O的位置关系是()A相交B相切C相离D不能确定2甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数如果设甲每小

2、时做x个,那么可列方程为( )ABCD3从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )ABCD4如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A(2017,0)B(2017,)C(2018,)D(2018,0)5不等式5+2x 1的解集在数轴上表示正确的是( ).ABCD6下列交通标志是中心对称图形的为()ABC

3、D7学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式其中正确的是( )A小明B小亮C小芳D没有正确的8如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )ABCD9如图,ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4)若反比例函数y在第一象限内的图象与ABC有交点,则k的取值范围是()A1k4B2k8C2k16D8k1610已知二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:abc0;2a+b0;b24ac0;ab+c0,其中正确的个数是()A1B2C3D4二、填空题(本大题共6个小题,每小题3分,共18分)

4、11当关于x的一元二次方程ax2+bx+c0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”如果关于x的一元二次方程x2+(m2)x2m0是“倍根方程”,那么m的值为_12分式方程-1=的解是x=_.13关于x的一元二次方程x22xm10有两个相等的实数根,则m的值为_14若关于x的一元二次方程(a1)x2x+1=0有实数根,则a的取值范围为_15如图,ABC内接于O,AB为O的直径,CAB=60,弦AD平分CAB,若AD=6,则AC=_16小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 三、解答题(共8题,

5、共72分)17(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C求双曲线解析式;点P在x轴上,如果ACP的面积为5,求点P的坐标.18(8分)抛物线:与轴交于,两点(点在点左侧),抛物线的顶点为(1)抛物线的对称轴是直线_;(2)当时,求抛物线的函数表达式;(3)在(2)的条件下,直线:经过抛物线的顶点,直线与抛物线有两个公共点,它们的横坐标分别记为,直线与直线的交点的横坐标记为,若当时,总有,请结合函数的图象,直接写出的取值范围19(8分)如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1

6、)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由20(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x0)元,让利后的购物金额为y元(1)分别

7、就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由21(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示(1)直接写出关于原点的中心对称图形各顶点坐标:_;(2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长22(10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经

8、过连续二次降价后降为324元,求平均每次降价的百分率23(12分)(1)(2)2+2sin 45(2)解不等式组,并将其解集在如图所示的数轴上表示出来24在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:根据圆O的半径和,圆

9、心O到直线L的距离的大小,相交:dr;相切:d=r;相离:dr;即可选出答案解:O的半径为3,圆心O到直线L的距离为2,32,即:dr,直线L与O的位置关系是相交故选A考点:直线与圆的位置关系2、A【解析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.故选A【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键3、D【解析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从

10、而得到可以验证成立的公式【详解】阴影部分的面积相等,即甲的面积=a2b2,乙的面积=(a+b)(ab)即:a2b2=(a+b)(ab)所以验证成立的公式为:a2b2=(a+b)(ab)故选:D【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质4、C【解析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题【详解】解:正六边形ABCDEF一共有6条边,即6次一

11、循环;20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,点F滚动2107次时的纵坐标与相同,横坐标的次数加1,点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,点F滚动2107次时的坐标为(2018,),故选C【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型5、C【解析】先解不等式得到x-1,根据数轴表示数的方法得到解集在-1的左边【详解】5+1x1,移项得1x-4,系数化为1得x-1故选C【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的

12、方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心6、C【解析】根据中心对称图形的定义即可解答【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意故选C【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合7、C【解析】试题解析: = =1所以正确的应是小芳故选C8、D【解析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确故选D【详解】请在此输入详解!9、C【解析】试题解析:

13、由于ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论ABC是直角三角形,当反比例函数经过点A时k最小,经过点C时k最大,k最小=12=2,k最大=44=1,2k1故选C10、D【解析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】抛物线对称轴是y轴的右侧,ab0,与y轴交于负半轴,c0,abc0,故正确;a0,x=1,b2a,2a+b0,故正确;抛物线与x轴有两个交点,b24ac0,故正确;当x=1时,y0,ab+c0,故正确故选D【点睛】本题主要考查了图

14、象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定二、填空题(本大题共6个小题,每小题3分,共18分)11、-1或-4【解析】分析: 设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.详解:由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:,化简整理得:,解得 .故答案为:-1或-4.点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.12、-5【解析】两边同时乘以(x+3)(x-

15、3),得6-x2+9=-x2-3x,解得:x=-5,检验:当x=-5时,(x+3)(x-3)0,所以x=-5是分式方程的解,故答案为:-5.【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.13、2.【解析】试题分析:已知方程x22x=0有两个相等的实数根,可得:44(m1)4m80,所以,m2.考点:一元二次方程根的判别式.14、a且a1【解析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可【详解】由题意得:0,即(-1)2-4(a-1)10,解得a,又a-10,a且a1.故答案为a且a1.点睛:本题考查的是根的判别式及一元二次方

16、程的定义,根据题意列出关于a的不等式组是解答此题的关键15、2【解析】首先连接BD,由AB是O的直径,可得C=D=90,然后由BAC=60,弦AD平分BAC,求得BAD的度数,又由AD=6,求得AB的长,继而求得答案【详解】解:连接BD,AB是O的直径,C=D=90,BAC=60,弦AD平分BAC,BAD=BAC=30,在RtABD中,AB=4,在RtABC中,AC=ABcos60=4=2故答案为216、3.551【解析】科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数

17、绝对值1 时,n 是正数;当原数的绝对值1 时,n 是负数【详解】3550000=3.551,故答案是:3.551【点睛】考查科学记数法的表示方法科学记数法的表示形式为 a10n 的形式,其中 1|a|10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值三、解答题(共8题,共72分)17、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代

18、入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或18、(1);(2);(3)【解析】(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线的对称轴;(2)根据抛物线的对称轴及即可得出点、的坐标,根据点的坐标,利用待定系数法即可求出抛物线的函数表达式;(3)利用配方法求出抛物线顶点的坐标,依照题意画出图形,观察图形可得出,再利用一次函数图象上点的坐标特征可得出,结

19、合的取值范围即可得出的取值范围【详解】(1)抛物线的表达式为,抛物线的对称轴为直线故答案为:(2)抛物线的对称轴为直线,点的坐标为,点的坐标为将代入,得:,解得:,抛物线的函数表达式为(3),点的坐标为直线y=n与直线的交点的横坐标记为,且当时,总有,x2x30,直线与轴的交点在下方,直线:经过抛物线的顶点, 【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出19、(1)y=2x23x;(2)C(1,1

20、);(3)(,)或(,)【解析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得ABONBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MGy轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PHx轴于点H,由条件可证得MOGPOH,由的

21、值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标【详解】(1)B(2,t)在直线y=x上,t=2,B(2,2),把A、B两点坐标代入抛物线解析式可得:,解得:,抛物线解析式为;(2)如图1,过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,点C是抛物线上第四象限的点,可设C(t,2t23t),则E(t,0),D(t,t),OE=t,BF=2t,CD=t(2t23t)=2t2+4t,SOBC=SCDO+SCDB=CDOE+CDBF=(2t2+4t)(t+2t)=2t2+4t,OBC的面积为2,2t2+4t=2,解得t1=t2=1,C(1,1);(3)存

22、在设MB交y轴于点N,如图2,B(2,2),AOB=NOB=45,在AOB和NOB中,AOB=NOB,OB=OB,ABO=NBO,AOBNOB(ASA),ON=OA=,N(0,),可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,M(,),C(1,1),COA=AOB=45,且B(2,2),OB=,OC=,POCMOB,POC=BOM,当点P在第一象限时,如图3,过M作MGy轴于点G,过P作PHx轴于点H,如图3COA=BOG=45,MOG=POH,且PHO=MGO,MOGPOH,M(,),MG=,OG=,P

23、H=MG=,OH=OG=,P(,);当点P在第三象限时,如图4,过M作MGy轴于点G,过P作PHy轴于点H,同理可求得PH=MG=,OH=OG=,P(,);综上可知:存在满足条件的点P,其坐标为(,)或(,)【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况20、(1)y1=0.85x,y2=0.75x+50 (x200),y2=x (0

24、x200);(2)x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【解析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x, 乙商场写出y关于x的函数解析式y2=200+(x200)0.75=0.75x+50(x200),即y2=x(0x200);(2)由y1y2,得0.85x0.75x+50,解得x500,即当x500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购

25、物花费一样;由y1y2,得0.85x0.75x+500,解得x500,即当x500时,到甲商场购物会更省钱;综上所述:x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【点睛】本题考查了一次函数的应用,分类讨论是解题关键21、(1),;(2)作图见解析,面积,【解析】(1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、的坐标;(2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可再利用弧长公式求出点C所经过的路径长【详解】解:(1

26、)由在平面直角坐标系中的位置可得:,与关于原点对称,(2)如图所示,即为所求,在旋转过程中所扫过的面积:点所经过的路径:【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键22、(1)1(2)10%【解析】试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为

27、(x-80)元,根据题意得,解得x=1经检验,x=1是原方程的根答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y,根据题意得1(1-y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去)答:平均每次降价10%考点:1.一元二次方程的应用;2.分式方程的应用23、(1)45;x2,在数轴上表示见解析【解析】(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集【详解】解:(1)原式=4+223=4+6=45;(2),解得:x,解得:x2,不

28、等式组的解集为:x2,在数轴上表示为:【点睛】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值24、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,根据S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二

29、次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B(2,0),将其代入得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK7924552455638251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁