《江西省南昌市2022-2023学年高考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌市2022-2023学年高考数学五模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则( )ABCD2在中,“”是“为钝角三角形”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件3函数在的图象大致为( )ABCD4设全集,集合,则( )ABCD5设i是虚数单位,若复数是纯虚数,则a的值为( )AB3
2、C1D6如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A2BC6D87若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A B C D8已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )ABCD9已知命题:任意,都有;命题:,则有则下列命题为真命题的是()ABCD10设等差数列的前n项和为,若,则( )ABC7D211执行程序框图,则输出的数值为( )ABCD12已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为
3、坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )AB2CD二、填空题:本题共4小题,每小题5分,共20分。13设等差数列的前项和为,若,则数列的公差_,通项公式_.14若满足,则目标函数的最大值为_.15设满足约束条件,则目标函数的最小值为_.16设,满足条件,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.
4、26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.18(12分)已知,分别为内角,的对边,且.(1)证明:;(2)若的面积,求角.19(12分)如图,在四棱锥中,四边形是直
5、角梯形, 底面 ,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.20(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.21(12分)在直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离22(10分)已知在多面体中,平面平面,且四边形为正方形,且/,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.参考答案一、选择题:本题共12
6、小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:,故C正确考点:复合函数求值2、C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有
7、关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.3、C【解析】先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,所以排除A选项;当时,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.4、A【解析】先求得全集包含的元素,由此求得集合的补集.【详解】由解得,故,所以,故选A.【点睛】本小题主要考查补集的概念及运算,考查一元二
8、次不等式的解法,属于基础题.5、D【解析】整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.6、A【解析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.7、B【解析】因为从有2件正品和2件次品的产品中
9、任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案 是正确的,应选答案B。点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。8、C【解析】先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公
10、共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.9、B【解析】先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则 不成立.则,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.10、B【解析】根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题11、C【解析】由题知:该程序框图是利用循环
11、结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,满足条件,满足条件,满足条件,满足条件,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.12、C【解析】计算得到,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,故,故,代入双曲线化简得到:,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、2 【解析】直接利用等差数列公式计算得到答案.【详解】,解得,故.故答案为:2;.【点睛】本题考查了等差数列的基本计算,意在考
12、查学生的计算能力.14、-1【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图, 化目标函数为,由图可得,当直线过点时,直线在轴上的截距最大,由得即,则有最大值,故答案为【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15、【解析】根据满足约束
13、条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.【详解】由满足约束条件,画出可行域如图所示阴影部分:将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点 此时,目标函数 取得最小值,最小值为故答案为:-1【点睛】本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.16、【解析】作出可行域,由得,平移直线,数形结合可求的最大值.【详解】作出可行域如图所示由得,则是直线在轴上的截距.平移直线,当直线经过可行域内的点时,最小,此时最大.解方程组,得,.故答案为:.【点睛】本题考查简单的线性规划,属于基础题.三、解答题:共
14、70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)利润约为111.2万元.【解析】(1)首先列出基本事件,然后根据古典概型求出恰好两个月合格的概率;(2)首先求出利润y和养殖量x的平均值,然后根据公式求出线性回归方程中的斜率和截距即可求出线性回归方程;(3)根据线性回归方程代入9月份的数据即可求出9月利润.【详解】(1)2月到6月中,合格的月份为2,3,4月份,则5个月份任意选取3个月份的基本事件有,共计10个,故恰好有两个月考核合格的概率为;(2),故;(3)当千只,(十万元)(万元),故9月份的利润约为111.2万元.【点睛】本题主要考查了古典概型,线性回归方程的
15、求解和使用,属于基础题.18、(1)见解析;(2)【解析】(1)利用余弦定理化简已知条件,由此证得(2)利用正弦定理化简(1)的结论,得到,利用三角形的面积公式列方程,由此求得,进而求得的值,从而求得角.【详解】(1)由已知得,由余弦定理得,.(2)由(1)及正弦定理得,即,.,.【点睛】本小题主要考查余弦定理、正弦定理解三角形,考查三角形的面积公式,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.19、(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求
16、得,在利用法向量求得和平面所成角的正弦值.试题解析:() 平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面()如图,以点为原点, 分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量设为面的法向量,则,即,取,则依题意,则于是设直线与平面所成角为,则即直线与平面所成角的正弦值为20、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意
17、恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,即成立,即成立.【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.21、(1)(2)最大距离为【解析】(1)直接利用极坐标方程
18、和参数方程的公式计算得到答案.(2)曲线的参数方程为,设,计算点到直线的距离公式得到答案.【详解】(1)由,得,则曲线的直角坐标方程为,即直线的直角坐标方程为(2)可知曲线的参数方程为(为参数),设,则到直线的距离为,所以线段的中点到直线的最大距离为【点睛】本题考查了极坐标方程,参数方程,距离的最值问题,意在考查学生的计算能力.22、(1)证明见解析;(2).【解析】(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,故可得/,为中点;又因为四边形为等腰梯形,是的中点,故可得/;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,作交于点,由(1)可知平面,又因为/,故可得平面,则;又因为/,故可得即,两两垂直,则分别以,为,轴建立空间直角坐标系,则,设面的法向量为,则,则,可取,设平面的法向量为,则,则,可取,可知平面与平面所成的锐二面角的余弦值为.【点睛】本题考查由面面平行推证线面平行,涉及用向量法求二面角的大小,属综合基础题.