《江苏省盐城市示范名校2023年高三第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省盐城市示范名校2023年高三第一次模拟考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( )ABCD2阿波罗尼斯(约公元前262190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,不共线时,的面积的最大值是( )ABCD3已知函数在上都存在导函数,对于任意的实数都有,当时,若,则实数的取值范围是( )ABCD4波罗尼斯(古希腊数学家,的公元前262-190年)的著作圆锥曲线论是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有
3、插足的余地他证明过这样一个命题:平面内与两定点距离的比为常数k(k0,且k1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆现有椭圆=1(ab0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,MAB面积的最大值为8,MCD面积的最小值为1,则椭圆的离心率为()ABCD5如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为( )A2B3C4D56已知复数满足(是虚数单位),则=()ABCD7已知空间两不同直线、,两不同平面,下列命题正确的是( )A若且,则B若且,则C若且,则D若不垂直于,且,则不垂直于8已知数列,是首项为8,公比为得等
4、比数列,则等于( )A64B32C2D49根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u= lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是( )AeBe2Cln2D2ln210已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )A5B3CD211执行如图所示的程序框图,则输出的的值为( ) ABCD12设,满足约束条件,若的最大值为,则的展开式中项的系数为( )A60B80C90D120二、填空题:本题共4小题,每小题5分,共20分。13已知, 是互相垂直的单位向量,若 与的夹角为60,则实数
5、的值是_14工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是_15如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?16函数的定义域是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆,直
6、线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由18(12分) 2018石家庄一检已知函数(1)若,求函数的图像在点处的切线方程;(2)若函数有两个极值点,且,求证:19(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天
7、的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)20(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成
8、立,说明理由.21(12分)在直角坐标系x0y中,把曲线为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.22(10分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解
9、.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.2、A【解析】根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,则,化简得,当点到(轴)距离最大时,的面积最大,面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.3、B【解析】先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,又,所以为偶函数, 从而等价于,因此选B.【
10、点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.4、D【解析】求得定点M的轨迹方程可得,解得a,b即可.【详解】设A(-a,0),B(a,0),M(x,y)动点M满足=2,则 =2,化简得.MAB面积的最大值为8,MCD面积的最小值为1, ,解得,椭圆的离心率为故选D【点睛】本题考查了椭圆离心率,动点轨迹,属于中档题5、A【解析】根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面
11、积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.6、A【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】解:由,得,故选【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题7、C【解析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确应选答案C8、A【解析】根据题意依次计算得到答案.【详解】根据题意知:,故,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力
12、.9、B【解析】将u= lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【详解】解:将u= lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.10、D【解析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【详解】解:由抛物线方程可知,即,.设 则,即,所以.所以线段的中点到轴的距离为.故选:D.【点睛】本题考查了抛物线的
13、定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.11、B【解析】列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,执行第一次循环时:,所以:不成立继续进行循环,当,时,成立,由于不成立,执行下一次循环,成立,成立,输出的的值为.故选:B【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型12、B【解析】画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到
14、项的系数为:.故选:.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出的值【详解】解:由题意,设(1,0),(0,1),则(,1),(1,);又夹角为60,()()2cos60,即,解得【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题14、60【解析】分析:首先将选定第一个钉,总共有6种方法,假设选定1号,之后分析第二步,第三步等,按照分类加法计数原理,可以求得共有10种方法,利用分步乘法计数原理,求得总共有种方法.详解
15、:根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.点睛:该题考查的是有关分类加法计数原理和分步乘法计数原理,在解题的过程中,需要逐个的将对应的过程写出来,所以利用列举法将对应的结果列出,而对于第一个选哪个是机会均等的,从而用乘法运算得到结果.15、(1);(2).【解析】(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,进而表示直线的方程,由直线与圆相切构建关系化简整理得,即可表示OA,OB,最后由三角形面积公式表示面积即可
16、;(2)令,则,由辅助角公式和三角函数值域可求得t的取值范围,进而对原面积的函数用含t的表达式换元,再令进行换元,并构建新的函数,由二次函数性质即可求得最小值.【详解】解:(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,.所以直线的方程为,即.因为直线与圆相切,所以.因为点在直线的上方,所以,所以式可化为,解得.所以,.所以面积为.(2)令,则,且,所以,.令,所以在上单调递减.所以,当,即时,取得最大值,取最小值.答:当时,面积为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模型,再按模型求最值,属于难题.16、【解析】由,得,所
17、以,所以原函数定义域为,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()详见解析;()能,或【解析】试题分析:(1)设直线,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;(2)第一步由 ()得的方程为设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.试题解析:解:(1)设直线,由得,直线的斜率,即即直线的斜率与的斜率的乘积为定值(2)四边形能为平行四边形直线过点,不过原点且与有两个交点的充要条件是,由 ()得的方程为设点的横坐标为由
18、得,即将点的坐标代入直线的方程得,因此四边形为平行四边形当且仅当线段与线段互相平分,即解得,当的斜率为或时,四边形为平行四边形考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即,分别用方程联立求两个
19、坐标,最后求斜率.18、(1) (2)见解析【解析】试题分析:(1)分别求得和,由点斜式可得切线方程;(2)由已知条件可得有两个相异实根,进而再求导可得,结合函数的单调性可得,从而得证.试题解析:(1)由已知条件,当时,当时,所以所求切线方程为 (2)由已知条件可得有两个相异实根,令,则,1)若,则,单调递增,不可能有两根;2)若,令得,可知在上单调递增,在上单调递减,令解得,由有,由有,从而时函数有两个极值点,当变化时,的变化情况如下表单调递减单调递增单调递减因为,所以,在区间上单调递增,另解:由已知可得,则,令,则,可知函数在单调递增,在单调递减,若有两个根,则可得,当时, ,所以在区间上
20、单调递增,所以19、(1)0.4;(2);(3)应选择方案,理由见解析【解析】(1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案的概率;(3)设骑手每日完成外卖业务量为件,分别表示出方案的日工资和方案的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择.【详解】(1)设事件为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单
21、的频率分别为,估计为0.4.(2)设事件为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案”,设事件,为“甲、乙、丙、丁四名骑手中恰有人选择方案”,则,所以四名骑手中至少有两名骑手选择方案的概率为.(3)设骑手每日完成外卖业务量为件,方案的日工资,方案的日工资,所以随机变量的分布列为 160180200220240260280 0.050.050.20.30.20.150.05;同理,随机变量的分布列为 150180230280330 0.30.30.20.150.05.,建议骑手应选择方案.【点睛】本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择
22、,属于中档题.20、(1)(2)存在;详见解析【解析】(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入0由恒成立问题可求得验证斜率不存在时也适合即得【详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以此时存在定点满足题意当直线斜率不存在时,显然也满足综上所述,存在定点,使成立【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法
23、21、(1)的普通方程为,的直角坐标方程为. (2)最小值为,此时【解析】(1)由的参数方程消去求得的普通方程,利用极坐标和直角坐标转化公式,求得的直角坐标方程.(2)设出点的坐标,利用点到直线的距离公式求得最小值的表达式,结合三角函数的指数求得的最小值以及此时点的坐标.【详解】(1)由题意知的参数方程为(为参数)所以的普通方程为.由得,所以的直角坐标方程为. (2)由题意,可设点的直角坐标为, 因为是直线,所以的最小值即为到的距离,因为 当且仅当时,取得最小值为,此时的直角坐标为即【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用曲线参数方程求解点到直线距离
24、的最小值问题,属于中档题.22、(1)当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)证明见解析【解析】(1)对求导,分,进行讨论,可得的单调性;(2)在定义域内是是增函数,由(1)可知,设,可得,则,设,对求导,利用其单调性可证明.【详解】解:的定义域为,因为,所以,当时,令,得,令,得;当时,则,令,得,或,令,得;当时,当时,则,令,得;综上所述,当时,在上递增,在上递减;当时,在上递增,在上递减,在上递增;当时,在上递增;当时,在上递增,在上递减,在上递增;(2)在定义域内是是增函数,由(1)可知,此时,设,又因为,则,设,则对于任意成立,所以在上是增函数,所以对于,有,即,有,因为,所以,即,又在递增,所以,即.【点睛】本题主要考查利用导数研究含参函数的单调性及导数在极值点偏移中的应用,考查学生分类讨论与转化的思想,综合性大,属于难题.