《河南省许昌市长葛市重点达标名校2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河南省许昌市长葛市重点达标名校2022-2023学年中考适应性考试数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A4B5C6D72已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP
2、,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对3实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )Aa+b0Ba-b0C4如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB
3、,那么AOB的度数是()A90B60C45D305如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()ABCD6若分式有意义,则的取值范围是( )A;B;C;D.7如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P若点P的坐标为(2a,b+1),则a与b的数量关系为( )Aa=bB2a+b=1C2ab=1D2a+b=18下列调查中,最适合采用全面调查(普查)方式的是( )A对重庆市初中学生每天阅读时间的调查B对端午节期间市场上粽子质量情况的调查C对某批次手机的防水功
4、能的调查D对某校九年级3班学生肺活量情况的调查9下列运算正确的是()A(a2)3=a5B(a-b)2=a2-b2C3=3D=-310已知二次函数(为常数),当时,函数的最小值为5,则的值为()A1或5B1或3C1或5D1或3二、填空题(本大题共6个小题,每小题3分,共18分)11把直线yx3向上平移m个单位后,与直线y2x4的交点在第一象限,则m的取值范围是_.12如图,ab,1110,340,则2_13如图,在矩形ABCD中,E是AD边的中点,垂足为点F,连接DF,分析下列四个结论:;其中正确的结论有_14分解因式:x24=_15如图,已知P的半径为2,圆心P在抛物线yx21上运动,当P与x
5、轴相切时,圆心P的坐标为_16如果a2b2=8,且a+b=4,那么ab的值是_三、解答题(共8题,共72分)17(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售市场调查反映:每降价1元,每星期可多卖30件已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?18(8分)关于x的一元二次方程x2(m1)x(2m3)1(1)求证:方程总有两个不相等的实
6、数根;(2)写出一个m的值,并求出此时方程的根19(8分)如图,D为O上一点,点C在直径BA的延长线上,且CDACBD(1)求证:CD是O的切线;(2)过点B作O的切线交CD的延长线于点E,BC6,求BE的长20(8分)已如:O与O上的一点A(1)求作:O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由21(8分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,
7、求O的直径22(10分)解不等式组 ,并把解集在数轴上表示出来.23(12分)已知A(4,2)、B(n,4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点求一次函数和反比例函数的解析式;求AOB的面积;观察图象,直接写出不等式kx+b0的解集24计算:.化简:.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1故选C2、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA
8、,所以OMA+AMP=O+MPA=90,得出MP是O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的
9、作图,重点是运用切线的判定来说明作法的正确性3、C【解析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案【详解】解:由数轴,得b-1,0a1A、a+b0,故A错误;B、a-b0,故B错误;C、0,故C符合题意;D、a21b2,故D错误;故选C【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b-1,0a1是解题关键,又利用了有理数的运算4、B【解析】首先连接AB,由题意易证得AOB是等边三角形,根据等边三角形的性质,可求得AOB的度数【详解】连接AB,根据题意得:OB=OA=AB,AOB是等边三角形,AOB=60.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,
10、解题的关键是熟练的掌握等边三角形的判定与性质.5、B【解析】根据相似三角形的判定方法一一判断即可【详解】解:因为中有一个角是135,选项中,有135角的三角形只有B,且满足两边成比例夹角相等,故选:B【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型6、B【解析】分式的分母不为零,即x-21【详解】分式有意义,x-21,.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零7、B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b
11、+1=0,2a+b=1故选B8、D【解析】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D9、D【解析】试题分析:A、原式=a6,错误;B、原式=a22ab+b2,错误;C、原式不能合并,错误;D、原式=3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式10、A【解析】由解析式可知该函数在x=h时取得最小值1,xh
12、时,y随x的增大而增大;当xh时,y随x的增大而减小;根据1x3时,函数的最小值为5可分如下两种情况:若h3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可【详解】解:xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),h=5,若1h3时,当x=h时,y取得最小值为1,不是5,此种情况不符合题意,舍去综上所述,h的值为1或5,故选:A【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11
13、、m1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),交点在第一象限,解得:m1考点:一次函数图象与几何变换12、1【解析】试题解析:如图,ab,3=40,4=3=401=2+4=110,2=110-4=110-40=1故答案为:113、【解析】证明EAC=ACB,ABC=AFE=90即可;由ADBC,推出AEFCBF,得到,由AE=AD=BC,得到,即CF=2AF
14、;作DMEB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;设AE=a,AB=b,则AD=2a,根据BAEADC,得到,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N,四边形ABCD是矩形,ADBC,ABC=90,AD=BC,BEAC于点F,EAC=ACB,ABC=AFE=90,AEFCAB,故正确;ADBC,AEFCBF,AE=AD=BC,即CF=2AF, CF=2AF,故正确;作DMEB交BC于M,交AC于N,DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC
15、,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,即b=a,tanCAD=,故错误;故答案为:【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键14、(x+2)(x2)【解析】【分析】直接利用平方差公式进行因式分解即可【详解】x24=x2-22=(x+2)(x2),故答案为:(x+2)(x2)【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反15、(,1)或(,1)【解析】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-
16、1将P的纵坐标代入函数解析式,求P点坐标即可【详解】根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1当y=1时, x1-1=1,解得x=当y=-1时, x1-1=-1,方程无解故P点的坐标为()或(-)【点睛】此题注意应考虑两种情况熟悉直线和圆的位置关系应满足的数量关系是解题的关键16、1【解析】根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案【详解】a1-b1=8,(a+b)(a-b)=8,a+b=4,a-b=1,故答案是:1【点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b1三、解答题(共8题,共72分)17
17、、(1)y=30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【解析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【详解】(1)y300+30(60x
18、)30x+1(2)设每星期利润为W元,W(x40)(30x+1)30(x55)2+2x55时,W最大值2每件售价定为55元时,每星期的销售利润最大,最大利润2元(3)由题意(x40)(30x+1)6480,解得52x58,当x52时,销售300+308540,当x58时,销售300+302360,该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.18、(1)见解析;(2)x11,x22【解析】(1)根据根的判别式列出关于m的不等式,求解可得;(2)取m2,代入原方程,然后解方程即可【详解】解
19、:(1)根据题意,(m1)24(2m2)m26m12(m2)24,(m2)241,方程总有两个不相等的实数根;(2)当m2时,由原方程得:x24x21整理,得(x1)(x2)1,解得x11,x22【点睛】本题主要考查根的判别式与韦达定理,一元二次方程ax2bxc1(a1)的根与b24ac有如下关系:当1时,方程有两个不相等的两个实数根;当1时,方程有两个相等的两个实数根;当1时,方程无实数根19、(1)证明见解析;(2).【解析】试题分析:连接OD.根据圆周角定理得到ADOODB90,而CDACBD,CBDBDO.于是ADOCDA90,可以证明是切线. 根据已知条件得到由相似三角形的性质得到
20、求得 由切线的性质得到根据勾股定理列方程即可得到结论试题解析:(1)连接OD.OBOD,OBDBDO.CDACBD,CDAODB.又AB是O的直径,ADB90,ADOODB90,ADOCDA90,即CDO90,ODCD.OD是O的半径,CD是O的切线;(2)CC,CDACBD,CDACBD,BC6,CD4.CE,BE是O的切线,BEDE,BEBC,BE2BC2EC2,即BE262(4BE)2,解得BE.20、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=D
21、E=EF=FA,则判断BE为直径,所以BFE=BCE=90,同理可得FBC=CEF=90,然后判断四边形BCEF为矩形【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形理由如下:连接BE,如图,六边形ABCDEF为正六边形,AB=BC=CD=DE=EF=FA,BE为直径,BFE=BCE=90,同理可得FBC=CEF=90,四边形BCEF为矩形【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了矩形
22、的判定与正六边形的性质21、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90,POAB,DAB=MCB=90,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90,AON
23、+OAC=90,OA=OB,BON=AON,BAP=AON,BAP+OAC=90,OAP=90,OA是半径,PA是O的切线;(3)连接BN,则MBN=90tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90,NBC=M=90BNC,MBCBNC,BC2=NCMC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.214=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等
24、知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度22、不等式组的解集为,在数轴上表示见解析.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【详解】由2(x+2)3x+3,可得:x1,由,可得:x3,则不等式组的解为:1x3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”
25、要用空心圆点表示23、(1)反比例函数解析式为y=,一次函数的解析式为y=x1;(1)6;(3)x4或0x1【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=x1与x轴交点C的坐标,然后利用SAOB=SAOC+SBOC进行计算;(3)观察函数图象得到当x4或0x1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集试题解析:(1)把A(4,1)代入,得m=1(4)=8,所以反比例函数解析式为,把B(n,4)代入,得4n=8,解得n=1,把A(4,1)
26、和B(1,4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=x1;(1)y=x1中,令y=0,则x=1,即直线y=x1与x轴交于点C(1,0),SAOB=SAOC+SBOC=11+14=6;(3)由图可得,不等式的解集为:x4或0x1考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式24、(1)5;(2)-3x+4【解析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式 (2)解:原式【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.