《浙江省温州市鹿城区2022-2023学年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州市鹿城区2022-2023学年中考联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算正确的是()AB0.00002=2105CD2下列实数中,为无理数的是()ABC5D0.31563如图,O的直径AB的长为10,弦AC长为6,ACB的平分线交O于D,则CD长为( )A7BCD94如图,在射线OA,OB上分别
2、截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD5将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()Ay=(x+2)25 By=(x+2)2+5 Cy=(x2)25 Dy=(x2)2+56为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()ABCD7估计的值在( )A0到l之间B1到2之间C2到3之间D3到4之间8某品牌的饮水机接通电源就进入自动程序:开机加热到水温100,停止加热,水温开始下降,此时
3、水温()与开机后用时(min)成反比例关系,直至水温降至30,饮水机关机饮水机关机后即刻自动开机,重复上述自动程序若在水温为30时,接通电源后,水温y()和时间x(min)的关系如图所示,水温从100降到35所用的时间是()A27分钟B20分钟C13分钟D7分钟9不等式3x2(x+2)的解是()Ax2Bx2Cx4Dx410如图,ABC的面积为8cm2 , AP垂直B的平分线BP于P,则PBC的面积为( )A2cm2B3cm2C4cm2D5cm2二、填空题(共7小题,每小题3分,满分21分)11如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE将ADE沿AE对折至AFE,延长EF交
4、边BC于点G,连接AG、CF下列结论:ABGAFG;BG=GC;AGCF;SFGC=1其中正确结论的是_12在RtABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_13如图,在RtABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则DCE的大小等于_度.14分解因式:8x-8xy+2y= _ .15一个多项式与的积为,那么这个多项式为 .16点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .17如图,一扇形纸扇完全打开后,外
5、侧两竹条AB和AC的夹角为120,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_(结果保留)三、解答题(共7小题,满分69分)18(10分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18,教学楼底部B的俯角为20,量得实验楼与教学楼之间的距离AB=30m(1)求BCD的度数(2)求教学楼的高BD(结果精确到0.1m,参考数据:tan200.36,tan180.32)19(5分)解方程(2x+1)2=3(2x+1)20(8分)已知抛物线y=a(x-1)2+3(a0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M
6、(1)求a的值,并写出点B的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DEx轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.21(10分)如图,在ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB2,AE2,求BAD的大小22(10分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中
7、任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数a6576八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a ,b 该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率23(
8、12分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是 人,补全频数分布直方图,扇形图中m ;(2)本次调查数据中的中位数落在 组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?24(14分)如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且B=90,求:BAD的度数;四边形ABCD的面积(结果保留根号)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】在完成此类化简题时,应先将分子
9、、分母中能够分解因式的部分进行分解因式有些需要先提取公因式,而有些则需要运用公式法进行分解因式通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去【详解】解:A、原式= ;故本选项错误;B、原式=210-5;故本选项错误;C、原式= ;故本选项错误;D、原式=;故本选项正确;故选:D【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒2、B【解析】根据无理数的定义解答即可.【详解】选项A、是分数,是有理数;选项B、是无
10、理数;选项C、5为有理数;选项D、0.3156是有理数;故选B【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.3、B【解析】作DFCA,交CA的延长线于点F,作DGCB于点G,连接DA,DB由CD平分ACB,根据角平分线的性质得出DF=DG,由HL证明AFDBGD,CDFCDG,得出CF=7,又CDF是等腰直角三角形,从而求出CD=【详解】解:作DFCA,垂足F在CA的延长线上,作DGCB于点G,连接DA,DBCD平分ACB,ACD=BCDDF=DG,弧AD=弧BD,DA=DBAFD=BGD=90,AFDBGD,AF=BG易证CDFCDG,CF=CGAC=6,BC=
11、8,AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)CF=7,CDF是等腰直角三角形,(这里由CFDG是正方形也可得)CD=故选B4、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键5、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】抛物线y=x2的顶点坐标为(0
12、,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(2,1),所以,平移后的抛物线的解析式为y=(x+2)21故选:A【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键6、C【解析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误故选:C【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.7、B【解析】91
13、116,故选B.8、C【解析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解【详解】解:设反比例函数关系式为:,将(7,100)代入,得k=700,将y=35代入,解得;水温从100降到35所用的时间是:207=13,故选C【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键9、D【解析】不等式先展开再移项即可解答.【详解】解:不等式3x2(x+2),展开得:3x2x+4,移项得:3x-2x4,解之得:x4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.10、C【解析】延长AP交BC于E,根据AP垂直B的平分线BP于P,即可求
14、出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积相等,即可求得PBC的面积【详解】延长AP交BC于EAP垂直B的平分线BP于P,ABPEBP,APBBPE90在APB和EPB中,APBEPB(ASA),SAPBSEPB,APPE,APC和CPE等底同高,SAPCSPCE,SPBCSPBE+SPCESABC4cm1故选C【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出SPBCSPBE+SPCESABC二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据翻折变换的性质和正方形的性质可证RtABGRtAFG;在直角ECG中,根据勾股定理可证BG=GC
15、;通过证明AGB=AGF=GFC=GCF,由平行线的判定可得AGCF;由于SFGC=SGCE-SFEC,求得面积比较即可【详解】正确理由:AB=AD=AF,AG=AG,B=AFG=90,RtABGRtAFG(HL);正确理由:EF=DE=CD=2,设BG=FG=x,则CG=6-x在直角ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1BG=1=6-1=GC;正确理由:CG=BG,BG=GF,CG=GF,FGC是等腰三角形,GFC=GCF又RtABGRtAFG;AGB=AGF,AGB+AGF=2AGB=180-FGC=GFC+GCF=2GFC=2GCF,AGB=AGF=GFC
16、=GCF,AGCF;错误理由:SGCE=GCCE=14=6GF=1,EF=2,GFC和FCE等高,SGFC:SFCE=1:2,SGFC=6=1故不正确正确的个数有1个: .故答案为【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度12、1【解析】解:如图在RtABC中(C=90),放置边长分别2,3,x的三个正方形,CEFOMEPFN,OE:PN=OM:PFEF=x,MO=2,PN=3,OE=x2,PF=x3,(x2):3=2:(x3),x=0(不符合题意,舍去),x=1故答案为1点睛:本题主要考查相似三角
17、形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键13、45【解析】试题解析:设DCE=x,ACD=y,则ACE=x+y,BCE=90-ACE=90-x-yAE=AC,ACE=AEC=x+y,BD=BC,BDC=BCD=BCE+DCE=90-x-y+x=90-y在DCE中,DCE+CDE+DEC=180,x+(90-y)+(x+y)=180,解得x=45,DCE=45考点:1.等腰三角形的性质;2.三角形内角和定理.14、1【解析】提取公因式1,再对余下的多项式利用完全平方公式继续分解完全平方公式:a11ab+b1=(ab)1【详解】8x1-8xy
18、+1y=1(4x1-4xy+y)=1(1x-y)1故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解15、【解析】试题分析:依题意知=考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。16、【解析】画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=.故答案为.17、cm1【解析】求出AD,先分别求出两个扇形的面积,再求出答案即可【详解】解:AB长为15
19、cm,贴纸部分的宽BD为15cm,AD=10cm,贴纸的面积为S=S扇形ABCS扇形ADE=(cm1),故答案为cm1【点睛】本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键三、解答题(共7小题,满分69分)18、(1)38;(2)20.4m【解析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高【详解】(1)过点C作CEBD,则有DCE=18,BCE=20,BCD=DCE+BCE=18+20=38;(2)由题意得
20、:CE=AB=30m,在RtCBE中,BE=CEtan2010.80m,在RtCDE中,DE=CDtan189.60m,教学楼的高BD=BE+DE=10.80+9.6020.4m,则教学楼的高约为20.4m【点睛】本题考查了解直角三角形的应用仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.19、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)=0,即2x+1=0,2x+13=0,解
21、得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大20、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,a=-1,抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x
22、-m)2+3,由解得x=点C的横坐标为MN=m-1,四边形MDEN是正方形,C(,m-1)把C点代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(,1-m)把C点代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.21、 (1)见解析;(2) 60.【解析】(1)先证明AEBAEF,推出EAB=E
23、AF,由ADBC,推出EAF=AEB=EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G根据菱形的性质得出AB=2,AG=AE=,BAF=2BAE,AEBF然后解直角ABG,求出BAG=30,那么BAF=2BAE=60【详解】解:(1)在AEB和AEF中,AEBAEF,EAB=EAF,ADBC,EAF=AEB=EAB,BE=AB=AFAFBE,四边形ABEF是平行四边形,AB=BE,四边形ABEF是菱形;(2)连结BF,交AE于GAB=AF=2,GA=AE=2=,在RtAGB中,cosBAE=,BAG=30,BAF=2BAG=60,【点睛】本题考查了平行四边形的性质与菱形的
24、判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.22、 (1)a16,b17.5(2)90(3) 【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解试题解析:(1)a=512.5%40%=16,512.5%=7b%,b=17.5,故答案为16,17.5;(2)6006(512.5%)=90(人),故答案为90;(3)如图,共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,则P(恰好选到一男一女)=考点:列表法与树状图法;用样本估计总体;扇形统计图23、(1)16、84
25、;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)【解析】(1)根据百分比所长人数总人数,圆心角百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【详解】(1)由题意总人数人,D组人数人;B组的圆心角为;(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人【点睛】本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.24、(1);(2)【解析】(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出ACD的形状,进而可求出BAD的度数;(2)由(1)可知ABC和ADC是Rt,再根据S四边形ABCD=SABC+SADC即可得出结论【详解】解:(1)连接AC,如图所示:AB=BC=1,B=90AC=, 又AD=1,DC=, AD2AC2=3 CD2=()2=3即CD2=AD2+AC2DAC=90 AB=BC=1BAC=BCA=45BAD=135;(2)由(1)可知ABC和ADC是Rt,S四边形ABCD=SABC+SADC=11+1= .【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键