《江苏省苏州市吴中学区横泾中学2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市吴中学区横泾中学2023年中考数学最后冲刺浓缩精华卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)
2、与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个2如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:;GDE=45;DG=DE在以上4个结论中,正确的共有( )个A1个B2 个C3 个D4个3如图是某个几何体的展开图,该几何体是()A三棱柱B三棱锥C圆柱D圆锥4如图,ABC内接于O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )A3:1B4:1C
3、5:2D7:25如图,将RtABC绕直角项点C顺时针旋转90,得到A BC,连接AA,若1=20,则B的度数是( ) A70B65C60D556点P(4,3)关于原点对称的点所在的象限是()A第四象限B第三象限C第二象限D第一象限7如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是( )ABCD8计算 的结果为()A1BxCD9下列命题中,正确的是( )A菱形的对角线相等B平行四边形既是轴对称图形,又是中心对称图形C正方形的对角线不能相等D正方形的对角线相等且互相垂直10如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(1,3)、(4,1)、(2,1),将ABC沿一确定方向平
4、移得到A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ()AA1(4,4),C1(3,2)BA1(3,3),C1(2,1)CA1(4,3),C1(2,3)DA1(3,4),C1(2,2)11如图,在ABC中,B46,C54,AD平分BAC,交BC于D,DEAB,交AC于E,则CDE的大小是()A40B43C46D5412如图,直线mn,直角三角板ABC的顶点A在直线m上,则的余角等于( )A19B38C42D52二、填空题:(本大题共6个小题,每小题4分,共24分)13在RtABC中,C90,AB2,BC,则sin_14已知一纸箱中,装有5个只有颜色不同的球,其中
5、2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_15关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 16若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为_17分解因式: 18化简:+3=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,ABCD,E、F分别为AB、CD上的点,且ECBF,连接AD,分别与EC、BF相交与点G、H,若ABCD,求证:AGDH20(6分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.求反比例
6、函数和一次函数的表达式;直接写出关于的不等式的解集.21(6分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0K150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条
7、件,设计出使这100台家电销售总利润最大的进货方案22(8分)已知:如图,E是BC上一点,ABEC,ABCD,BCCD求证:ACED23(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.24(10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程经了解得到以下信息(如表):工程队每天修路的长度(米)
8、单独完成所需天数(天)每天所需费用(元)甲队30n600乙队mn141160(1)甲队单独完成这项工程所需天数n=,乙队每天修路的长度m=(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数)当x=90时,求出乙队修路的天数;求y与x之间的函数关系式(不用写出x的取值范围);若总费用不超过22800元,求甲队至少先修了多少米25(10分)如图所示,已知,试判断与的大小关系,并说明理由.26(12分)如图,AB是O的直径,点E是上的一点,DBC=BED(1)请判断直线BC与O的位置关系,并说明理由;(2)已知AD=5,CD=4,求BC的长27(12分)
9、 ( 1)计算: 4sin31+(2115)1(3)2(2)先化简,再求值:1,其中x、y满足|x2|+(2xy3)2=1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离440=160km
10、,则m=160,正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态2、C【解析】【分析】根据正方形的性质和折叠的性质可得AD=DF,A=GFD=90,于是根据“HL”判定ADGFDG,再由GF+GB=GA+GB=12,EB=EF,BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得GDE=45,
11、再抓住BEF是等腰三角形,而GED显然不是等腰三角形,判断是错误的【详解】由折叠可知,DF=DC=DA,DFE=C=90,DFG=A=90,ADGFDG,正确;正方形边长是12,BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12x)2,解得:x=4AG=GF=4,BG=8,BG=2AG,正确;ADGFDG,DCEDFE,ADG=FDG,FDE=CDEGDE=45.正确; BE=EF=6,BEF是等腰三角形,易知GED不是等腰三角形,错误;正确说法是故选:C【点睛】本题综合性较强,考查了翻折变换的性质和正方形
12、的性质,全等三角形的判定与性质,勾股定理,有一定的难度3、A【解析】侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.4、A【解析】利用垂径定理的推论得出DOAB,AF=BF,进而得出DF的长和DEFCEA,再利用相似三角形的性质求出即可【详解】连接DO,交AB于点F,D是的中点,DOAB,AF=BF,AB=8,AF=BF=4,FO是ABC的中位线,ACDO,BC为直径,AB=8,AC=6,BC=10,FO=AC=1,DO=5,DF=5-1=2,ACDO,DEFCE
13、A,=1故选:A【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出DEFCEA是解题关键5、B【解析】根据图形旋转的性质得AC=AC,ACA=90,B=ABC,从而得AAC=45,结合1=20,即可求解【详解】将RtABC绕直角项点C顺时针旋转90,得到A BC,AC=AC,ACA=90,B=ABC,AAC=45,1=20,BAC=45-20=25,ABC=90-25=65,B=65故选B【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键6、C【解析】由题意得点P的坐标为(4,3),根据象限内点的符号特点可
14、得点P1的所在象限【详解】设P(4,3)关于原点的对称点是点P1,点P1的坐标为(4,3),点P1在第二象限故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(,+)的点在第二象限7、B【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称从物体的前面向后面投射所得的视图称主视图(正视图)能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图能反映物体的左面形状故选B考点:三视图8、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点睛】本题主要考查分式的
15、加减法,解题的关键是掌握同分母分式的加减运算法则9、D【解析】根据菱形,平行四边形,正方形的性质定理判断即可【详解】A.菱形的对角线不一定相等, A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误; C. 正方形的对角线相等,C错误; D.正方形的对角线相等且互相垂直,D 正确; 故选:D【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理10、A【解析】分析:根据B点的变化,确定平移的规律,将ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.详解:由点B(4,1)的对应点B1的坐标是(1,2)知
16、,需将ABC向右移5个单位、上移1个单位,则点A(1,3)的对应点A1的坐标为(4,4)、点C(2,1)的对应点C1的坐标为(3,2),故选A点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.11、C【解析】根据DEAB可求得CDEB解答即可【详解】解:DEAB,CDEB46,故选:C【点睛】本题主要考查平行线的性质:两直线平行,同位角相等快速解题的关键是牢记平行线的性质12、D【解析】试题分析:过C作CD直线m,mn,CDmn,DCA=FAC=52,=DCB,ACB=90,=9052=38,则a的余角是52故选D考点:平行线的性质;余角和补角二、填空题:
17、(本大题共6个小题,每小题4分,共24分)13、【解析】根据A的正弦求出A60,再根据30的正弦值求解即可【详解】解:,A60,故答案为【点睛】本题考查了特殊角的三角函数值,熟记30、45、60角的三角函数值是解题的关键14、1【解析】先根据概率公式得到,解得.【详解】根据题意得,解得.故答案为:.【点睛】本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.15、k且k1【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知=b24ac1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:有两个不相等的实数根,=14k1,且k1,解得,k
18、且k116、1【解析】根据方程的系数结合根的判别式即可得出=m24m=0,将其代入2m28m+1中即可得出结论【详解】关于x的方程x2mx+m=0有两个相等实数根,=(m)24m=m24m=0,2m28m+1=2(m24m)+1=1故答案为1【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键17、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式因此,先提取公因式后继续应用平方差公式分解即可:18、【解析】试题分析:先进行二次根式的化
19、简,然后合并,可得原式=2+=3三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、证明见解析.【解析】【分析】利用AAS先证明ABHDCG,根据全等三角形的性质可得AH=DG,再根据AHAGGH,DGDHGH即可证得AGHD.【详解】ABCD,AD,CEBF,AHBDGC,在ABH和DCG中,ABHDCG(AAS),AHDG,AHAGGH,DGDHGH,AGHD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.20、(1)y=-y=x-1(1)x2【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详
20、解:(1), 点A(5,2),点B(2,3), 又点C在y轴负半轴,点D在第二象限,点C的坐标为(2,-1),点D的坐标为(-1,3)点在反比例函数y=的图象上, 反比例函数的表达式为 将A(5,2)、B(2,-1)代入y=kx+b,解得: 一次函数的表达式为(1)将代入,整理得: 一次函数图象与反比例函数图象无交点观察图形,可知:当x2时,反比例函数图象在一次函数图象上方,不等式kx+b的解集为x2点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点21、(1)每台空调的进价为1
21、200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100k150时,购进电冰箱38台,空调62台,总利润最大;当0k100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【解析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k100)x+20000,分三种情况讨论即可【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得, m=1200,经检验,m=1200是原分式方程的解,也符合题意,m+3
22、00=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(16001500)x+(14001200)(100x)=100x+20000,33x38,x为正整数,x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0k150)元后,这100台家电的销售总利润为y1元,y1=(16001500+k)x+(14001200)(100x)=(k100)x+20000,当100k150时,y1随x的最大而增大,x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0k100时,y1随x的最大而减小,x=34
23、时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键22、见解析【解析】试题分析:已知ABCD,根据两直线平行,内错角相等可得B=ECD,再根据SAS证明ABCECD全,由全等三角形对应边相等即可得AC=ED试题解析:ABCD,B=DCE在ABC和ECD中,ABCECD(SAS),AC=ED考点:平行线的性质;全等三角形的判定及性质23、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解
24、析】试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可试题解析:(1)根据题意,用一月份A款的数量乘以:50=40(双)即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:则三月份的总销售额是:40065+50026=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋
25、考点:1.折线统计图;2.条形统计图24、(1)35,50;(2)12;y=x+;150米【解析】(1)用总长度每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度乙单独完成所需时间可得乙队每天修路的长度m;(2)根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)两队合作时间=总长度,列式计算可得;由中的相等关系可得y与x之间的函数关系式;根据:甲队先修x米的费用+甲、乙两队每天费用合作时间22800,列不等式求解可得【详解】解:(1)甲队单独完成这项工程所需天数n=105030=35(天),则乙单独完成所需天数为21天,乙队每天修路的长度m=105021=50(米),故
26、答案为35,50;(2)乙队修路的天数为=12(天);由题意,得:x+(30+50)y=1050,y与x之间的函数关系式为:y=x+;由题意,得:600+(600+1160)(x+)22800,解得:x150,答:若总费用不超过22800元,甲队至少先修了150米【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.25、.【解析】首先判断AED与ACB是一对同位角,然后根据已知条件推出DEBC,得出两角相等【详解】解:AED=ACB理由:如图,分别标记1,2,3,1.1+1=180(平角定义),1+2=180(已知)2=1EFAB(内错角相等,两直线平行)3=ADE(两直线
27、平行,内错角相等)3=B(已知),B=ADE(等量代换)DEBC(同位角相等,两直线平行)AED=ACB(两直线平行,同位角相等)【点睛】本题重点考查平行线的性质和判定,难度适中26、(1)BC与相切;理由见解析;(2)BC=6【解析】试题分析:(1)BC与相切;由已知可得BAD=BED又由DBC=BED可得BAD=DBC,由AB为直径可得ADB=90,从而可得CBO=90,继而可得BC与相切(2)由AB为直径可得ADB=90,从而可得BDC=90,由BC与相切,可得CBO=90,从而可得BDC=CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC=-6 舍去)试题解析:(1)BC
28、与相切;,BAD=BED ,DBC=BED,BAD=DBC,AB为直径,ADB=90,BAD+ABD=90,DBC+ABD=90,CBO=90,点B在上,BC与相切(2)AB为直径,ADB=90,BDC=90,BC与相切,CBO=90,BDC=CBO,AC=9,BC=6(BC=-6 舍去)考点:1切线的判定与性质;2相似三角形的判定与性质;3勾股定理27、 (1)-7;(2) ,.【解析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】(1)原式=34+19=7;(2)原式=1 =1 = =;|x2|+(2xy3)2=1,解得:x=2,y=1,当x=2,y=1时,原式=.故答案为(1)-7;(2);.【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.