湖北省潜江市积玉口镇中学2023届中考数学最后冲刺浓缩精华卷含解析.doc

上传人:lil****205 文档编号:88307856 上传时间:2023-04-25 格式:DOC 页数:18 大小:818KB
返回 下载 相关 举报
湖北省潜江市积玉口镇中学2023届中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共18页
湖北省潜江市积玉口镇中学2023届中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《湖北省潜江市积玉口镇中学2023届中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省潜江市积玉口镇中学2023届中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A1B3C5D1或52如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )A1B2C5D63已知某校

2、女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()Aa13,b=13 Ba13,b13 Ca13,b13 Da13,b=134一、单选题如图,ABC中,AD是BC边上的高,AE、BF分别是BAC、ABC的平分线,BAC=50,ABC=60,则EAD+ACD=()A75B80C85D905如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A该班总人数为50B步行人数为30C乘车人数是骑车人数的2.5倍D骑车

3、人数占20%6下列式子成立的有( )个的倒数是2(2a2)38a5()2方程x23x+10有两个不等的实数根A1B2C3D47如图,在热气球C处测得地面A、B两点的俯角分别为30、45,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A200米B200米C220米D100米8如图,空心圆柱体的左视图是( )ABCD9如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()ABCD10如图,将ABC 绕点C顺时针旋转,使点B落在AB边上点B处,此时,点A的对应点 A恰好落在 BC 边的延长线上,下列结论错误的是( )ABCB=

4、ACABACB=2BCBCA=BACDBC 平分BBA11在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念12由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A三个视图的面积一样大B主视图的面积最小C左视图的面积最小D俯视图的面积最小二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在菱形ABCD中,于E,则菱形ABCD的面积是_14如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,

5、=,那么=_15对角线互相平分且相等的四边形是()A菱形B矩形C正方形D等腰梯形16如图,RtABC 中,C=90 , AB=10,则AC的长为_ .17已知:如图,ABC内接于O,且半径OCAB,点D在半径OB的延长线上,且A=BCD=30,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为_18已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120转动转盘,待转

6、盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率20(6分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k0,x0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k0,x0)的图象于点P,过点P作PFy轴于点F;记矩形OEPF和正方形OABC不

7、重合部分的面积为S,点E的运动时间为t秒(1)求该反比例函数的解析式(2)求S与t的函数关系式;并求当S=时,对应的t值(3)在点E的运动过程中,是否存在一个t值,使FBO为等腰三角形?若有,有几个,写出t值21(6分)如图,O是ABC的外接圆,AE平分BAC交O于点E,交BC于点D,过点E做直线lBC(1)判断直线l与O的位置关系,并说明理由;(2)若ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长22(8分)先化简,再计算: 其中23(8分)先化简,再求值:,其中a是方程a(a+1)0的解24(10分)科技改变世界2017年底,快递

8、分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹没电的时候还会自己找充电桩充电某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?25(10分)先化

9、简,再求值:x(x+1)(x+1)(x1),其中x=126(12分)如图,在ABC中,D、E分别是边AB、AC上的点,DEBC,点F在线段DE上,过点F作FGAB、FHAC分别交BC于点G、H,如果BG:GH:HC2:4:1求的值27(12分)如图,已知是的外接圆,圆心在的外部,求的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,

10、平移的距离为3+2=5,故选D【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用2、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案详解:数据1,2,x,5,6的众数为6,x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.3

11、、A【解析】试题解析:原来的平均数是13岁,1323=299(岁),正确的平均数a=12.9713,原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,b=13;故选A考点:1.平均数;2.中位数.4、A【解析】分析:依据AD是BC边上的高,ABC=60,即可得到BAD=30,依据BAC=50,AE平分BAC,即可得到DAE=5,再根据ABC中,C=180ABCBAC=70,可得EAD+ACD=75详解:AD是BC边上的高,ABC=60,BAD=30,BAC=50,AE平分BAC,BAE=25,DAE=3025=5,ABC中,C=180ABCBAC=70,EAD+ACD=5+70=7

12、5,故选A点睛:本题考查了三角形内角和定理:三角形内角和为180解决问题的关键是三角形外角性质以及角平分线的定义的运用5、B【解析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例【详解】A、总人数是:2550%=50(人),故A正确;B、步行的人数是:5030%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确由于该题选择错误的,故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取

13、信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题6、B【解析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断【详解】解:的倒数是2,故正确;(2a2)38a6,故错误;(-)2,故错误;因为(3)241150,所以方程x23x+10有两个不等的实数根,故正确故选B【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答7、D【解析】在热气球C处测得地面B点的俯角分别为45,BD=CD=100米,再在RtACD中求出AD的长,据此即可求出AB的长【详解】在热气球C处测得地面B点的俯角分别为45,

14、BDCD100米,在热气球C处测得地面A点的俯角分别为30,AC2100200米,AD100米,ABAD+BD100+100100(1+)米,故选D【点睛】本题考查了解直角三角形的应用-仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形8、C【解析】根据从左边看得到的图形是左视图,可得答案【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图9、D【解析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可【详解】因为两个同心圆等分成八等份,飞镖落在

15、每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)=.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.10、C【解析】根据旋转的性质求解即可【详解】解:根据旋转的性质,A:与均为旋转角,故=,故A正确;B:,又,故B正确;D:,BC平分BBA,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件11、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确

16、;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合12、C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C考点:三视图二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CDAE,可求菱形ABCD的面积【详解】sinD= AD=11四边形ABCD是菱形AD=CD=11菱形ABCD的面积=118=96cm1故答案为:96cm1【点睛】本题考查了菱形的性质,解

17、直角三角形,熟练运用菱形性质解决问题是本题的关键14、【解析】根据,只要求出、即可解决问题;【详解】四边形是平行四边形,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.15、B【解析】根据平行四边形的判定与矩形的判定定理,即可求得答案【详解】对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线相等且互相平分的四边形一定是矩形故选B【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理此题比较简单,解题的关键是熟记定理16、8【解析】在RtABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【详解】RtAB

18、C中,C=90,AB=10cosB=,得BC=6由勾股定理得BC=故答案为8.【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理17、2【解析】试题分析:根据题意可得:O=2A=60,则OBC为等边三角形,根据BCD=30可得:OCD=90,OC=AC=2,则CD=,则18、等【解析】根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,所以解析式满足a0,b=0,c=0即可【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.三、

19、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2).【解析】【分析】(1)根据题意可求得2个“2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120,所以2个“2”所占的扇形圆心角为3602120120,转动转盘一次,求转出的数字是2的概率为;(2)由(1)可知,该转盘转出“1”、“3”、“2”的概率相同,均为,所有可能性如下表所示:第一次 第二次1

20、231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比20、(1)y=(x0);(2)S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当S=时,对应的t值为或6;(3)当t=或或3时,使FBO为等腰三角形【解析】(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t(-3

21、)=-3t+9与当点P2在点B的右侧时,则S=(t-3)=9-去分析求解即可求得答案;(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案【详解】解:(1)正方形OABC的面积为9,点B的坐标为:(3,3),点B在反比例函数y=(k0,x0)的图象上,3=,即k=9,该反比例函数的解析式为:y= y=(x0);(2)根据题意得:P(t,),分两种情况:当点P1在点B的左侧时,S=t(3)=3t+9(0t3);若S=,则3t+9=,解得:t=;当点P2在点B的右侧时,则S=(t3)=9;若S=,则9=,解得:t=6;S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当

22、S=时,对应的t值为或6;(3)存在若OB=BF=3,此时CF=BC=3,OF=6,6=,解得:t=;若OB=OF=3,则3=,解得:t= ;若BF=OF,此时点F与C重合,t=3;当t=或或3时,使FBO为等腰三角形【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用21、(1)直线l与O相切;(2)证明见解析;(3)【解析】试题分析:(1)连接OE、OB、OC由题意可证明,于是得到BOE=COE,由等腰三角形三线合一的性质可证明OEBC,于是可证明OEl,故此可证明直线l与O相切;(2)先由

23、角平分线的定义可知ABF=CBF,然后再证明CBE=BAF,于是可得到EBF=EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明BEDAEB,由相似三角形的性质可求得AE的长,于是可得到AF的长试题解析:(1)直线l与O相切理由如下:如图1所示:连接OE、OB、OCAE平分BAC,BAE=CAEBOE=COE又OB=OC,OEBClBC,OEl直线l与O相切(2)BF平分ABC,ABF=CBF又CBE=CAE=BAE,CBE+CBF=BAE+ABF又EFB=BAE+ABF,EBF=EFBBE=EF(3)由(2)得BE=EF=DE+DF=1DBE=BAE,DEB=BEA

24、,BEDAEB,即,解得;AE=,AF=AEEF=1=考点:圆的综合题22、;【解析】根据分式的化简求值,先把分子分母因式分解,再算乘除,通分后计算减法,约分化简,最后代入求值即可【详解】解:= = 当时,原式=【点睛】此题主要考查了分式的化简求值,把分式的除法化为乘法,然后约分是解题关键23、【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,a=-1,将a=-1代入得,原式=【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代

25、值计算是解题关键.24、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台【解析】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;(2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,根据题意两不等式即可得到结论【详解】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,解得,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(200a)台

26、,由题意得,30a+40(200a)7000,解得:a100,则最多应购进A种机器人100台【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键25、x+1,2.【解析】先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.【详解】原式=x2+x(x21)=x2+xx2+1=x+1,当x=1时,原式=2【点睛】本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.26、【解析】先根据平行线的性质证明ADEFGH,再由线段DF=BG、FE=HC及BGGHHC=241,可求得的值.【详解】解:DEBC,ADE=B,FGAB,FGH=B,ADE=FGH,同理:AED=FHG,ADEFGH, ,DEBC ,FGAB,DF=BG,同理:FE=HC,BGGHHC=241,设BG=2k,GH=4k,HC=1k,DF=2k,FE=1k,DE=5k,.【点睛】本题考查了平行线的性质和三角形相似的判定和相似比.27、4【解析】已知ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在RtOBH中,用半径表示出OH的长,即可用勾股定理求得半径的长【详解】作于点,则直线为的中垂线,直线过点,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁