《浙江省温州市第八中学2023年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州市第八中学2023年中考试题猜想数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )ABCD2若分式有意义,则x的取值范围是( )Ax3Bx3Cx3Dx=33运用乘
2、法公式计算(4+x)(4x)的结果是()Ax216B16x2C168x+x2D8x24如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:ac1;a+b=1;4acb2=4a;a+b+c1其中正确结论的个数是()A1 B2 C3 D45一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A8,6 B7,6 C7,8 D8,76提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.75106 B13.75105 C1.375108 D1.3751097如图是由三个
3、相同的小正方体组成的几何体,则该几何体的左视图是()ABCD8已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da309点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A0B1C1D7201710如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30,看这栋楼底部C的俯角为60,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )A160米B(60+160)C160米D360米二、填空题(共7小题,每小题3分,满分21分)11在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方
4、法. 答:_.12如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状)请从下面的A、B两题中任选一题作答,我选择_A、按照小明的要求搭几何体,小亮至少需要_个正方体积木B、按照小明的要求,小亮所搭几何体的表面积最小为_13如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF,连接CE,CF,则CEF周长的最小值为_14阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径
5、作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为_15如图,在ABC中,CA=CB,ACB=90,AB=2,点D为AB的中点,以点D为圆心作圆心角为90的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为_16已知一组数据1,2,0,1,x,1的平均数是1,则这组数据的中位数为_17如图,矩形ABCD中,AB2,点E在AD边上,以E为圆心,EA长为半径的E与BC相切,交CD于点F,连接EF若扇形EAF的面积为,则BC的长是_三、解答
6、题(共7小题,满分69分)18(10分)如图,在平面直角坐标系xOy中,正比例函数yx的图象与一次函数ykxk的图象的交点坐标为A(m,2)(1)求m的值和一次函数的解析式;(2)设一次函数ykxk的图象与y轴交于点B,求AOB的面积;(3)直接写出使函数ykxk的值大于函数yx的值的自变量x的取值范围19(5分)计算:(1)22sin45+(2018)0+|20(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图和图请根据相关信息,解答下列问题:(1)图中m的值为_.(2)求这40个样本数据的平均数、众数和中位数:(3)根
7、据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。21(10分)如图,在ABCD中,AEBC交边BC于点E,点F为边CD上一点,且DFBE.过点F作FGCD,交边AD于点G.求证:DGDC22(10分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB求双曲线的解析式;求点C的坐标,并直接写出y1y2时x的取值范围23(12分) (1)如图,四边形为正方形,那么与相等吗?为什么?(2)如图,在中,为边的中点,于点,交于,求的值(3)如图,中,为边的中点,于点,交于,若,求.24(14分)如图,大楼底右侧有
8、一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30,测得大楼顶端A的仰角为45(点B,C,E在同一水平直线上)已知AB80m,DE10m,求障碍物B,C两点间的距离(结果保留根号)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.2、C【解析】试题分析:分式有意义,x30,x3;故选C考点:分式有意义的条件3、B【解析】根
9、据平方差公式计算即可得解【详解】,故选:B【点睛】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.4、C【解析】根据图象知道:a1,c1,ac1,故正确;顶点坐标为(1/2 ,1),x=-b/2a =1/2 ,a+b=1,故正确;根据图象知道:x=1时,y=a+b+c1,故错误;顶点坐标为(1/2 ,1),=1,4ac-b2=4a,故正确其中正确的是故选C5、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)
10、中位数6、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】13.75亿=1.375109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.7、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可详解:从左边看竖直叠放2个正方形故选:C点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项8、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件
11、,故C错误;D、a30是随机事件,故D错误;故选B点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【解析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案【详解】解:由题意,得a=-4,b=1(a+b)2017=(-1)2017=-1,故选B【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键10、C【解析】过点A作ADBC于点D.根据
12、三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作ADBC于点D.在RtABD中,BAD30,AD120m,BDADtan30120m; 在RtADC中,DAC60,CDADtan60120m.BCBDDCm.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.二、填空题(共7小题,每小题3分,满分21分)11、答案不唯一【解析】分析:把y改写成顶点式,进而解答即可.详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.点睛:本题考查了二次
13、函数图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-)+,然后把抛物线的平移问题转化为顶点的平移问题.12、A, 18, 1 【解析】A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;B、分别得到前后面,上下面,左右面的面积,相加即可求解【详解】A、小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,该长方体需要小立方体432=36个,小明用18个边长为1的小正方体搭成了一个几何体,小亮至少还需36-18=18个小立方体,B、表面积为:2(8+8+7)=1故答案是:A,18,1【点睛】考查了由三视图判断几何体的知识,能够
14、确定两人所搭几何体的形状是解答本题的关键.13、2+4【解析】如图作CHBD,使得CHEF2,连接AH交BD由F,则CEF的周长最小【详解】如图作CHBD,使得CHEF2,连接AH交BD由F,则CEF的周长最小CHEF,CHEF,四边形EFHC是平行四边形,ECFH,FAFC,EC+CFFH+AFAH,四边形ABCD是正方形,ACBD,CHDB,ACCH,ACH90,在RtACH中,AH4,EFC的周长的最小值2+4,故答案为:2+4【点睛】本题考查轴对称最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题14、作图见解析,【解析】解:如图,点
15、M即为所求连接AC、BC由题意知:AB=4,BC=1AB为圆的直径,ACB=90,则AM=AC=,点M表示的数为.故答案为点睛:本题主要考查作图尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理15、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90,GDM=HDN,则在DMG和DN
16、H中, ,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键16、2【解析】解:这组数据的平均数为2,有 (2+2+0-2+x+2)=2,可求得x=2将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,其平均数即中位数是(2+2)2=2故答案是:217、1【解析】分析:设AEF=n,由题意,解得n=120,推出AEF=120,在RtEFD中,求出DE即可解决问题详解:设AEF=n,由题意,解得n=120,AEF
17、=120,FED=60,四边形ABCD是矩形,BC=AD,D=90,EFD=10,DE=EF=1,BC=AD=2+1=1,故答案为1 点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型三、解答题(共7小题,满分69分)18、(1)y=1x1(1)1(3)x1【解析】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kxk计算出k的值,从而得到一次函数解析式为y=1x1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x1时,直线y=kxk
18、都在y=x的上方,即函数y=kxk的值大于函数y=x的值试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kxk得1kk=1,解得k=1,所以一次函数解析式为y=1x1;(1)把x=0代入y=1x1得y=1,则B点坐标为(0,1),所以SAOB=11=1;(3)自变量x的取值范围是x1考点:两条直线相交或平行问题19、1【解析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果【详解】解:原式=11+1+=1+1+=1【点睛】此题考查了含有特殊角的三角函数值的运算
19、,熟练掌握各运算法则是解题的关键.20、(1)25;(2)平均数:28.15,所以众数是28,中位数为28,(3)体育测试成绩得满分的大约有300名学生.【解析】(1)根据统计图中的数据可以求得m的值;(2)根据条形统计图中的数据可以计算出平均数,得到众数和中位数;(3)根据样本中得满分所占的百分比,可以求得该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生【详解】解:(1),m的值为25;(2)平均数:,因为在这组样本数据中,28出现了12次,出现的次数最多,所以众数是28;因为将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是28,所以这组样本数据的中位数为28;
20、(3)2000300(名)估计该中学九年级2000名学生中,体育测试成绩得满分的大约有300名学生.【点睛】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确它们各自的计算方法21、证明见解析.【解析】试题分析:先由平行四边形的性质得到B=D,AB=CD,再利用垂直的定义得到AEB=GFD=90,根据“ASA”判定AEBGFD,从而得到AB=DC,所以有DG=DC试题解析:四边形ABCD为平行四边形,B=D,AB=CD,AEBC,FGCD,AEB=GFD=90,在AEB和GFD中,B=D,BE=DF,AEB=GFD,AEBGFD,AB=DC,DG=DC考点:1全
21、等三角形的判定与性质;2平行四边形的性质22、(1);(1)C(1,4),x的取值范围是x1或0x1【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论【详解】(1)点A在直线y1=1x1上,设A(x,1x1),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=1x1,x=1,A(1,1),k=11=4,;(1),解得:,C(1,4),由图象得:y1y1时x的取值范围是x1或0x1【点睛】本题考查了反比例函
22、数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大23、 (1)相等,理由见解析;(2)2;(3).【解析】(1)先判断出AB=AD,再利用同角的余角相等,判断出ABF=DAE,进而得出ABFDAE,即可得出结论;(2)构造出正方形,同(1)的方法得出ABDCBG,进而得出CG=AB,再判断出AFBCFG,即可得出结论;(3)先构造出矩形,同(1)的方法得,BAD=CBP,进而判断出ABDBCP,即可求出CP,再同(2)的方法判断出CFPAFB,建立方程即可得出结论【详解】解:(1)BF=AE,理由:四边形ABCD是正方形,A
23、B=AD,BAD=D=90,BAE+DAE=90,AEBF,BAE+ABF=90,ABF=DAE,在ABF和DAE中, ABFDAE,BF=AE, (2) 如图2, 过点A作AMBC,过点C作CMAB,两线相交于M,延长BF交CM于G,四边形ABCM是平行四边形,ABC=90,ABCM是矩形,AB=BC,矩形ABCM是正方形,AB=BC=CM,同(1)的方法得,ABDBCG,CG=BD,点D是BC中点,BD=BC=CM,CG=CM=AB,ABCM,AFBCFG, (3) 如图3,在RtABC中,AB=3,BC=4,AC=5,点D是BC中点,BD=BC=2,过点A作ANBC,过点C作CNAB,两
24、线相交于N,延长BF交CN于P,四边形ABCN是平行四边形,ABC=90,ABCN是矩形,同(1)的方法得,BAD=CBP,ABD=BCP=90,ABDBCP,CP= 同(2)的方法,CFPAFB,CF=.【点睛】本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键24、(7010)m【解析】过点D作DFAB于点F,过点C作CHDF于点H.通过解得到DF的长度;通过解得到CE的长度,则【详解】如图,过点D作DFAB于点F,过点C作CHDF于点H.则DE=BF=CH=10m,在中,AF=80m10m=70m, DF=AF=70m.在中,DE=10m, 答:障碍物B,C两点间的距离为