《湖北省武汉梅苑校2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖北省武汉梅苑校2023届中考联考数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在-,0,2这四个数中,最小的数是( )ABC0D22一个多边形内角和是外角和的2倍,它是( )A五边形B六边形C七边形D八边形3如图,点C、D是线段AB上的两点,点D是线段AC的中点若AB=10cm,BC=4cm,则线段DB的长等于()A2cmB3cmC6cmD7cm4在平面直角坐标
2、系中,将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是( )A(2,4)B(1,5)C(1,-3)D(-5,5)5如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )ABCD6如图,A,B是半径为1的O上两点,且OAOB点P从A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是ABC或D或7下列图形中,周长不是32 m的图形是( )ABCD8如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形O
3、ABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)9某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )A74B44C42D4010如图,在等腰直角ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在等腰ABC中,AB=AC,BC边上的高AD=6c
4、m,腰AB上的高CE=8cm,则BC=_cm12如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结当时,我们称是的“双旋三角形”如果等边的边长为a,那么它的“双旋三角形”的面积是_(用含a的代数式表示)13函数,当x0时,y随x的增大而_14如图,已知O是ABD的外接圆,AB是O的直径,CD是O的弦,ABD=58,则BCD的度数是_15若关于x的方程有两个相等的实数根,则m的值是_16如图,AB是O的直径,点C是O上的一点,若BC=6,AB=10,ODBC于点D,则OD的长为_17某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位
5、同学成绩的中位数是_三、解答题(共7小题,满分69分)18(10分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图 成绩分组组中值频数25x3027.5430x3532.5m35x4037.52440x45a3645x5047.5n50x5552.54(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?19(5分)解不等式组 请结合题意填空,完成本题的解答(I)解不等式(1),得 ;(
6、II)解不等式(2),得 ;(III)把不等式和的解集在数轴上表示出来:(IV)原不等式组的解集为 20(8分)张老师在黑板上布置了一道题:计算:2(x+1)2(4x5),求当x和x时的值小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由21(10分)已知关于x的分式方程=2和一元二次方程mx23mx+m1=0中,m为常数,方程的根为非负数(1)求m的取值范围;(2)若方程有两个整数根x1、x2,且m为整数,求方程的整数根22(10分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上
7、找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.23(12分)某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2018年春节期间旅游情况统计图(如图),根据图中信息解答下列问题:(1)2018年春节期间,该市A、B、C、D、E这五个景点共接待游客人数为多少?(2)扇形统计图中E景点所对应的圆心角的度数是,并补全条形统计图(3)甲,乙两个旅行团在A、B、D三个景点中随机选择一个,求这两个旅行团选中同一景点的概率24(14分)有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率图表
8、示甲、乙合作完成的工作量y(件)与工作时间t(时)的函数图象图分别表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)与工作时间t(时)的函数图象(1)求甲5时完成的工作量;(2)求y甲、y乙与t的函数关系式(写出自变量t的取值范围);(3)求乙提高工作效率后,再工作几个小时与甲完成的工作量相等?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】在,0,1这四个数中,10,故最小的数为:1故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,
9、特别是两个负数的大小比较.2、B【解析】多边形的外角和是310,则内角和是2310720设这个多边形是n边形,内角和是(n2)180,这样就得到一个关于n的方程,从而求出边数n的值【详解】设这个多边形是n边形,根据题意得:(n2)1802310解得:n1故选B【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决3、D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC
10、的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.4、B【解析】试题分析:由平移规律可得将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(1,5),故选B考点:点的平移5、A【解析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式【详解】解:大正方形的面积-小正方形的面积=,矩形的面积=,故,故选:A【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键6、D【解析】分两种情形讨论当点P顺时针旋转
11、时,图象是,当点P逆时针旋转时,图象是,由此即可解决问题【详解】解:当点P顺时针旋转时,图象是,当点P逆时针旋转时,图象是故选D7、B【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可【详解】A. L=(6+10)2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)2=32,其周长为32.D. L=(6+10)2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.8、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p
12、(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.9、C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.10、B【解析】先根据翻折变换的性质得到DEFAEF,再根据等腰三角形的性质及三角形外角的性质可得到BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解【详解】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF
13、,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,sinBED=sinCDF=故选B【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中二、填空题(共7小题,每小题3分,满分21分)11、 【解析】根据三角形的面积公式求出,根据等腰三角形的性质得到BDDCBC,根据勾股定理列式计算即可【详解】AD是BC边上的高,CE是AB边上的高,ABCEBCAD,AD6,CE8,ABAC,ADBC,BDDCBC,AB2BD2AD2,AB2BC23
14、6,即BC2BC236,解得:BC故答案为:【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关12、.【解析】首先根据等边三角形、“双旋三角形”的定义得出A BC是顶角为150的等腰三角形,其中AB=AC=a过C作CDAB于D,根据30角所对的直角边等于斜边的一半得出CDACa,然后根据SABCABCD即可求解【详解】等边ABC的边长为a,AB=AC=a,BAC=60将ABC的边AB绕着点A顺时针旋转(090)得到AB,AB=AB=a,BAB=边AC绕着点A逆时针旋转(090)得到AC,AC=AC=a,CAC=,BAC=BA
15、B+BAC+CAC=+60+=60+90=150如图,过C作CDAB于D,则D=90,DAC=30,CDACa,SABCABCDaaa1故答案为:a1【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了含30角的直角三角形的性质,等边三角形的性质以及三角形的面积13、减小【解析】先根据反比例函数的性质判断出函数的图象所在的象限,再根据反比例函数的性质进行解答即可【详解】解:反比例函数中, 此函数的图象在一、三象限,在每一象限内y随x的增大而减小.故答案为减小.【点睛】考查反比例函数的图象与性质,反比例函数 当时,图象在
16、第一、三象限.在每个象限,y随着x的增大而减小,当时,图象在第二、四象限.在每个象限,y随着x的增大而增大.14、32【解析】根据直径所对的圆周角是直角得到ADB=90,求出A的度数,根据圆周角定理解答即可【详解】AB是O的直径,ADB=90,ABD=58,A=32,BCD=32,故答案为3215、m=- 【解析】根据题意可以得到=0,从而可以求得m的值【详解】关于x的方程有两个相等的实数根,=,解得:.故答案为.16、1【解析】根据垂径定理求得BD,然后根据勾股定理求得即可【详解】解:ODBC,BD=CD=BC=3,OB=AB=5,在RtOBD中,OD=1故答案为1【点睛】本题考查垂径定理及
17、其勾股定理,熟记定理并灵活应用是本题的解题关键17、85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.三、解答题(共7小题,满分69分)18、(1)详见解析(2)2400【解析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀
18、的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.532.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=10041224364=1补全频数分布直方图如下:(2)优秀的人数所占的比例是:=0.6,该县中考体育成绩优秀学生人数约为:40000.6=2400(人)19、(1)x;(1)x1;(3)答案见解析;(4)x1【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解:(I)解不等式(1),得x;(II)解不等式(1),得x1;(III)把不等式和的解集在数轴上表示出来:(IV
19、)原不等式组的解集为:x1故答案为x、x1、x1【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键20、小亮说的对,理由见解析【解析】先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.【详解】2(x+1)2(4x5)=2x2+4x+24x+5,=2x2+7,当x=时,原式=+7=7;当x=时,原式=+7=7故小亮说的对【点睛】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.21、(1)且,;(2)当m=1时,方程的整数根为0和3.【解析】(1
20、)先解出分式方程的解,根据分式的意义和方程的根为非负数得出的取值;(2)根据根与系数的关系得到x1+x2=3,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.【详解】解:(1)关于x的分式方程的根为非负数,且.又,且,解得且.又方程为一元二次方程,.综上可得:且,. (2)一元二次方程有两个整数根x1、x2,m为整数, x1+x2=3,为整数,m=1或.又且,m1.当m=1时,原方程可化为.解得:,. 当m=1时,方程的整数根为0和3.【点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.22、(1)抛物线的解析式为
21、,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=
22、t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的
23、解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题23、(1)50万人;(2)43.2;统计图见解析(3)【解析】(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数;(2)先用360乘以E的百分比求得E景点所对应的圆心角的度数,再根据B、D景点接待游客数补全条形统计图;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市景点共接待游客数为:1530%=50(万人);(2)扇形统计图中E景点所对应的圆心角的度数是:360=43.2,B景点的人数为502
24、4%=12(万人)、D景点的人数为5018%=9(万人),补全条形统计图如下:故答案为43.2;(3)画树状图可得:共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,P(同时选择去同一个景点)【点睛】本题考查的是统计以及用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比24、(1)1件;(2)y甲=30t(0t5);y乙=;(3)小时;【解析】(1)根据图可得出总工作量为370件,根据图可得出乙完成了220件,从而可得出甲5小
25、时完成的工作量;(2)设y甲的函数解析式为y=kx+b,将点(0,0),(5,1)代入即可得出y甲与t的函数关系式;设y乙的函数解析式为y=mx(0t2),y=cx+d(2t5),将点的坐标代入即可得出函数解析式;(3)联立y甲与改进后y乙的函数解析式即可得出答案【详解】(1)由图得,总工作量为370件,由图可得出乙完成了220件,故甲5时完成的工作量是1(2)设y甲的函数解析式为y=kt(k0),把点(5,1)代入可得:k=30故y甲=30t(0t5);乙改进前,甲乙每小时完成50件,所以乙每小时完成20件,当0t2时,可得y乙=20t;当2t5时,设y=ct+d,将点(2,40),(5,220)代入可得:,解得:,故y乙=60t80(2t5)综上可得:y甲=30t(0t5);y乙=(3)由题意得:,解得:t=,故改进后2=小时后乙与甲完成的工作量相等【点睛】本题考查了一次函数的应用,解题的关键是能读懂函数图象所表示的信息,另外要熟练掌握待定系数法求函数解析式的知识.