浙江省教育绿色评价联盟2023年高三第三次模拟考试数学试卷含解析.doc

上传人:lil****205 文档编号:88307766 上传时间:2023-04-25 格式:DOC 页数:18 大小:1.51MB
返回 下载 相关 举报
浙江省教育绿色评价联盟2023年高三第三次模拟考试数学试卷含解析.doc_第1页
第1页 / 共18页
浙江省教育绿色评价联盟2023年高三第三次模拟考试数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《浙江省教育绿色评价联盟2023年高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省教育绿色评价联盟2023年高三第三次模拟考试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图是计算值的一个程序框图,其中判断框内应填入的条件是( )ABCD2做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为( )ABC1D23下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边、直角边,已知以直角边为直径的半圆的面积之比为,记,则( )ABC1D4已知集合,则( )ABCD5已知分别为圆与的直径,则的取值范围为( )ABCD6已知 ,且是的充分不必要条

3、件,则的取值范围是( )ABCD7阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )ABCD8若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是( )ABCD9若复数满足,则( )ABC2D10为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标

4、雷达图,则下面叙述不正确的是( )A甲的数据分析素养优于乙B乙的数据分析素养优于数学建模素养C甲的六大素养整体水平优于乙D甲的六大素养中数学运算最强11一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )ABCD12关于函数,有下列三个结论:是的一个周期;在上单调递增;的值域为.则上述结论中,正确的个数为()ABCD二、填空题:本题共4小题,每小题5分,共20分。13设实数,满足,则的最大值是_.14如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为_.15已知等比数列的前项和为,若,则的值是 16已知,为双曲线的左、右焦点,双曲线

5、的渐近线上存在点满足,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.18(12分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.19(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图

6、所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一

7、级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图 以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.20(12分)在角中,角A、B、C的对边分别是a、b、c,若(1)求角A;

8、(2)若的面积为,求的周长21(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.22(10分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系曲线的极坐标方程为:,曲线的参数方程为其中,为参数,为常数(1)写出与的直角坐标方程;(2)在什么范围内取值时,与有交点参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体

9、的n的值为12,k的值为6,即判断框内的不等式应为或 所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题2、C【解析】每一次成功的概率为,服从二项分布,计算得到答案.【详解】每一次成功的概率为,服从二项分布,故.故选:.【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.3、D【解析】根据以直角边为直径的半圆的面积之比求得,即的值,由此求得和的值,进而求得所求表达式的值.【详解】由于直角边为直径的半圆的面积之比为,所以,即,所以,所以.故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题.4、B【解析】求出集合,利用集

10、合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.5、A【解析】由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题6、D【解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命

11、题转换,使问题易于求解.7、D【解析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.8、C【解析】由题可知,设函数,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且

12、仅有三个整数,结合图象,可求出实数的取值范围.【详解】设函数,因为,所以,或,因为 时,或时,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,所以.故选:C.【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.9、D【解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.10、D【解析】根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据

13、分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.11、C【解析】根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,

14、故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.12、B【解析】利用三角函数的性质,逐个判断即可求出【详解】因为,所以是的一个周期,正确;因为,所以在上不单调递增,错误;因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域当时,在上单调递增,所以,的值域为,错误;综上,正确的个数只有一个,故选B【点睛】本题主要考查三角函数的性质应用二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据目标函数的解析式形式,分析目标函数的几何意义,

15、然后判断求出目标函数取得最优解的点的坐标,即可求解【详解】作出实数,满足表示的平面区域,如图所示:由可得,则表示直线在轴上的截距,截距越小,越大.由可得,此时最大为1,故答案为:1【点睛】本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想14、【解析】根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题15、-2【解析】试题分析:,考点:等比数列性质及求和公式16、【解析】设,由可得

16、,整理得,即点在以为圆心,为半径的圆上又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得

17、,即,代入,得,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的应用,属于中档题.18、【解析】利用极坐标方程与普通方程、参数方程间的互化公式化简即可.【详解】因为,所以,所以曲线的直角坐标方程为.由,得,所以曲线的普通方程为.由,得,所以(舍),所以,所以曲线的交点坐标为.【点睛】本题考查极坐标方程与普通方程,参数方程与普通方程间的互化,考查学生的计算能力,是一道容易题.19、(1)0.024;(2)分布列见解析,;(3)【解析】(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需

18、要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,而由一级滤芯更换频数分布表和二级滤芯更换频数条形图可知,一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,再由乘法原理可求出概率;(2)由二级滤芯更换频数条形图可知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,而的可能取值为8,9,10,11,12,然后求出概率,可得到的分布列及数学期望;(3)由,且,可知若,则,或若,则,再分别计算两种情况下的所需总费用的期望值比较大小即可.【详解】(1)由题意知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中

19、一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16”为事件,因为一个一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,所以.(2)由柱状图知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,由题意的可能取值为8,9,10,11,12,从而,.所以的分布列为891011120.040.160.320.320.16(个).或用分数表示也可以为89101112(个).(3)解法一:记表示该客户的净水系统在使用期内购买各级滤芯所需总费用(单位:元)因为,且,1若

20、,则,(元);2若,则,(元).因为,故选择方案:.解法二:记分别表示该客户的净水系统在使用期内购买一级滤芯和二级滤芯所需费用(单位:元)1若,则,的分布列为128016800.60.488010800.840.16该客户的净水系统在使用期内购买的各级滤芯所需总费用为(元);2若,则,的分布列为800100012000.520.320.16(元).因为所以选择方案:.【点睛】此题考查离散型随机变量的分布列、数学期望的求法及应用,考查古典概型,考查运算求解能力,属于中档题.20、(1);(2)1.【解析】(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围

21、A(0,),可求A=(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解ABC的周长的值【详解】(1)由题意,在中,因为,由正弦定理,可得sinAsinB=sinBcosA,又因为,可得sinB0,所以sinA=cosA,即:tanA=,因为A(0,),所以A=;(2)由(1)可知A=,且a=5,又由ABC的面积2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以ABC的周长a+b+c=5+7=1【点睛】本题主要考查了正弦定

22、理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题21、 (1);(2).【解析】(1)通过讨论的范围,分为,三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.【详解】(1)当时,原不等式等价于,解得,所以,当时,原不等式等价于,解得,所以此时不等式无解,当时,原不等式等价于,解得,所以 综上所述,不等式解集为. (2)由,得,当时,恒成立,所以; 当时,. 因为当且仅当即或时,等号成立,所以;综上的取值范围是.【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.22、(1),(2)【解析】(1)利用,代入可求;消参可得直角坐标方程. (2)将的参数方程代入的直角坐标方程,与有交点,可得,解不等式即可求解.【详解】(1)(2)将的参数方程代入的直角坐标方程得:与有交点,即【点睛】本题考查了极坐标方程与普通方程的转化、参数方程与普通方程的转化、直线与圆的位置关系的判断,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁