《河北省石家庄市第二十八中学2022-2023学年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省石家庄市第二十八中学2022-2023学年中考押题数学预测卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1实数a、b、c在数轴上的位置如图所示,则代数式|ca|a+b|的值等于()Ac+bBbcCc2a+bDc2ab2据悉,超级磁力风力发电机可以大幅
2、度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A5.3103B5.3104C5.3107D5.31083如图,已知矩形ABCD中,BC2AB,点E在BC边上,连接DE、AE,若EA平分BED,则的值为()ABCD4如图,在热气球C处测得地面A、B两点的俯角分别为30、45,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A200米B200米C220米D100米5据调查,某班20为女同学所穿鞋子的尺码如表所示,尺码(码)3435363738人数251021则鞋子尺码的众数和中位数分别是(
3、)A35码,35码B35码,36码C36码,35码D36码,36码6如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且ABCGEF;弯道为以点O为圆心的一段弧,且,所对的圆心角均为90甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示结合题目信息,下列说法错误的是()A甲车在立交桥上共行驶8sB从F口出比从G口出多行驶40mC甲车从F口出,乙车从G口出D立交桥总长为150m7据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际
4、奥委会官方网站也创下冬奥会收看率纪录用科学记数法表示88000为()A0.88105 B8.8104 C8.8105 D8.81068为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:6,1,x,2,1,1若这组数据的中位数是1,则下列结论错误的是()A方差是8B极差是9C众数是1D平均数是19下列图形中,哪一个是圆锥的侧面展开图?ABCD10如图,已知AB是O的直径,弦CDAB于E,连接BC、BD、AC,下列结论中不一定正确的是()AACB=90BOE=BECBD=BCD二、填空题(共7小题,每小题3分,满分21分)11如图,O的半径为5cm,圆心O到AB的
5、距离为3cm,则弦AB长为_ cm12九章算术是中国传统数学最重要的著作,奠定了中国传统数学的基本框架它的代数成就主要包括开方术、正负术和方程术其中,方程术是九章算术最高的数学成就九章算术中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为_13RtABC中,ABC=90,AB=3,BC=4,过点B的直线把ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_14在平面直角坐标系中,若点P(2x6,
6、5x)在第四象限,则x的取值范围是_;15若x=-1, 则x2+2x+1=_.16如图,点A,B在反比例函数y(x0)的图象上,点C,D在反比例函数y(k0)的图象上,ACBDy轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为_17如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB=15,ACD=45,若l1、l2之间的距离为50m,则古树A、B之间的距离为_m三、解答题(共7小题,满分69分)18(10分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)
7、两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积19(5分)已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处如图,已知折痕与边BC交于点O,连接AP、OP、OA(1)求证:;(2)若OCP与PDA的面积比为1:4,求边AB的长20(8分)在RtABC中,C=90,B=30,AB=10,点D是射线CB上的一个动点,ADE是等边三角形,点F是AB的中点,连接EF(1)如图,点D在线段CB上时,求证:AEFADC;连接BE,设线段CD=x,BE=y,求y2x2的值;(2)当DAB=15时,求ADE的面积21(10分)综合与探究:如图1,抛物线y=x2+
8、x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点经过点A的直线l与y轴交于点D(0,)(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A,连接FA、BA,设直线l的运动时间为t(t0)秒探究下列问题:请直接写出A的坐标(用含字母t的式子表示);当点A落在抛物线上时,求直线l的运动时间t的值,判断此时四边形ABEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A,B,E为顶点的四边
9、形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由22(10分)九章算术中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?请解答上述问题.23(12分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图 成绩分组组中值频数25x3027.5430x3532.5m35
10、x4037.52440x45a3645x5047.5n50x5552.54(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?24(14分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据数轴得到ba0c,根据有理数的加法法则,减法法则得到c-a0,a+b0,根据绝对值的性质化简计算【详解】由数轴可
11、知,ba0c,c-a0,a+b0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键2、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).3、C【解析】过点A作AFDE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判
12、定和性质以及矩形的性质解答即可【详解】解:如图,过点A作AFDE于F,在矩形ABCD中,ABCD,AE平分BED,AFAB,BC2AB,BC2AF,ADF30,在AFD与DCE中C=AFD=90,ADF=DEC,AF=DC,,AFDDCE(AAS),CDE的面积AFD的面积矩形ABCD的面积ABBC2AB2,2ABE的面积矩形ABCD的面积2CDE的面积(2)AB2,ABE的面积,,故选:C【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB4、D【解析】在热气球C处测得地面B点的俯角分别为4
13、5,BD=CD=100米,再在RtACD中求出AD的长,据此即可求出AB的长【详解】在热气球C处测得地面B点的俯角分别为45,BDCD100米,在热气球C处测得地面A点的俯角分别为30,AC2100200米,AD100米,ABAD+BD100+100100(1+)米,故选D【点睛】本题考查了解直角三角形的应用-仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形5、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【详解】数据36出现了10次,次数最多,所以众数为36,一共有20个数
14、据,位置处于中间的数是:36,36,所以中位数是(36+36)2=36.故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.6、C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.D.立交桥总长为:故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.7、B【解析】试题分析:根
15、据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).因此,88000一共5位,88000=8.88104. 故选B.考点:科学记数法.8、A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)6=-1,数据-1出现两次最多,众数为-1,极差=1-(-6)=2,方差= (-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1
16、)2=2故选A9、B【解析】根据圆锥的侧面展开图的特点作答【详解】A选项:是长方体展开图B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【点睛】考查了几何体的展开图,注意圆锥的侧面展开图是扇形10、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90,故A正确;点E不一定是OB的中点,OE与BE的关系不能确定,故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键二、填空题(共7小题,每小题3分,满分21分)11、1cm【
17、解析】首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在RtOAC中,根据勾股数得到AC=4,这样即可得到AB的长【详解】解:如图,连接OA,则OA=5,OC=3,OCAB,AC=BC,在RtOAC中,AC=4,AB=2AC=1故答案为1 【点睛】本题考查垂径定理;勾股定理12、【解析】试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.考点:二元一次方程组的应用13、3.1或4.32或4.2【解析】【分析】在RtABC中,通过解直角三角形可得出AC=5、SABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可【
18、详解】在RtABC中,ACB=90,AB=3,BC=4,AB=5,SABC=ABBC=1沿过点B的直线把ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:当AB=AP=3时,如图1所示,S等腰ABP=SABC=1=3.1;当AB=BP=3,且P在AC上时,如图2所示,作ABC的高BD,则BD=,AD=DP=1.2,AP=2AD=3.1,S等腰ABP=SABC=1=4.32;当CB=CP=4时,如图3所示,S等腰BCP=SABC=1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2【点睛】本题考查了勾股定理、等腰三角形的性质以及三
19、角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键14、3x1【解析】根据第四象限内横坐标为正,纵坐标为负可得出答案.【详解】点P(2x-6,x-5)在第四象限, 解得-3x1故答案为-3x1.【点睛】本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.15、2【解析】先利用完全平方公式对所求式子进行变形,然后代入x的值进行计算即可.【详解】x=-1, x2+2x+1=(x+1)2=(-1+1)2=2,故答案为:2.【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.16、1【解析】
20、过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换SOACSCOMSAOM,SABDS梯形AMNDS梯形AAMNB进而求解【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y(x0)的图象上,点A,B的横坐标分别为1,2,A(1,1),B(2,),ACBDy轴,C(1,k),D(2,),OAC与ABD的面积之和为,SABDS梯形AMNDS梯形AAMNB,k1,故答案为1【点睛】本题考查反比例函数的性质,k的几何意义能够将三角形面积进行合理的转换是解题的关键17、(50)【解析】过点A作AMDC于点M,过点B作BNDC于点N则AM
21、BN通过解直角ACM和BCN分别求得CM、CN的长度,则易得MNAB【详解】解:如图,过点A作AMDC于点M,过点B作BNDC于点N,则ABMN,AMBN在直角ACM,ACM45,AM50m,CMAM50m在直角BCN中,BCNACBACD60,BN50m,CN(m),MNCMCN50(m)则ABMN(50)m故答案是:(50)【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题三、解答题(共7小题,满分69分)18、(1)y=-,y=-2x-4(2)1【解析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函
22、数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=
23、0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=22+26,=2+6,=1考点:反比例函数与一次函数的交点问题19、 (1)详见解析;(2)10.【解析】只需证明两对对应角分别相等可得两个三角形相似;故.根据相似三角形的性质求出PC长以及AP与OP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长【详解】四边形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90.由折叠可得:AP=AB,PO=BO,PAO=BAO,APO=B.APO=90.APD=90CPO=POC.D=C,APD=POC.OCPPDA.OCP与PDA的面积
24、比为1:4,OCPD=OPPA=CPDA=14=12.PD=2OC,PA=2OP,DA=2CP.AD=8,CP=4,BC=8.设OP=x,则OB=x,CO=8x.在PCO中,C=90,CP=4,OP=x,CO=8x,x2=(8x)2+42.解得:x=5.AB=AP=2OP=10.边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.20、(1)证明见解析;25;(2)为或50+1【解析】(1)在直角三角形ABC中,由30所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三
25、角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;由全等三角形对应角相等得到AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:当点在线段CB上时;当点在线段CB的延长线上时,分别求出三角形ADE面积即可【详解】(1)、证明:在RtABC中,B=30,AB=10,CAB=60,AC=AB=5,点F是AB的中点,AF=AB=5,AC=AF,ADE是等边三角形,AD=AE,EAD=60, CAB=EAD,即CAD+DAB=FAE+DAB,CAD=FAE, AEFADC(SAS);AEFADC,AEF=C=90,EF=
26、CD=x,又点F是AB的中点,AE=BE=y,在RtAEF中,勾股定理可得:y2=25+x2,y2x2=25.(2)当点在线段CB上时, 由DAB=15,可得CAD=45,ADC是等腰直角三角形,AD2=50,ADE的面积为;当点在线段CB的延长线上时, 由DAB=15,可得ADB=15,BD=BA=10,在RtACD中,勾股定理可得AD2=200+100, 综上所述,ADE的面积为或【点睛】此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键21、(1)A(1,0),B(3,0),y=x;(2)A(t1, t);ABEF为菱形,见解析;(3)存在,
27、P点坐标为(,)或(,)【解析】(1)通过解方程x2+x+0得A(1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)作AHx轴于H,如图2,利用OA1,OD得到OAD60,再利用平移和对称的性质得到EAEAt,AEFAEF60,然后根据含30度的直角三角形三边的关系表示出AH,EH即可得到A的坐标;把A(t1,t)代入yx2x得(t1)2(t1)t,解方程得到t2,此时A点的坐标为(2,),E(1,0),然后通过计算得到AFBE2,AFBE,从而判断四边形ABEF为平行四边形,然后加上EFBE可判定四边形ABEF为菱形;(3)讨论:当ABBE时,四边形ABEP为矩形,利用点A
28、和点B的横坐标相同得到t13,解方程求出t得到A(3,),再利用矩形的性质可写出对应的P点坐标;当ABEA,如图4,四边形ABPE为矩形,作AQx轴于Q,先确定此时A点的坐标,然后利用点的平移确定对应P点坐标【详解】(1)当y=0时,x2+x+=0,解得x1=1,x2=3,则A(1,0),B(3,0),设直线l的解析式为y=kx+b,把A(1,0),D(0,)代入得,解得,直线l的解析式为y=x;(2)作AHx轴于H,如图,OA=1,OD=,OAD=60,EFAD,AEF=60,点A 关于直线l的对称点为A,EA=EA=t,AEF=AEF=60,在RtAEH中,EH=EA=t,AH=EH=t,
29、OH=OE+EH=t1+t=t1,A(t1, t);把A(t1, t)代入y=x2+x+得(t1)2+(t1)+=t,解得t1=0(舍去),t2=2,当点A落在抛物线上时,直线l的运动时间t的值为2;此时四边形ABEF为菱形,理由如下:当t=2时,A点的坐标为(2,),E(1,0),OEF=60OF=OE=,EF=2OE=2,F(0,),AFx轴,AF=BE=2,AFBE,四边形ABEF为平行四边形,而EF=BE=2,四边形ABEF为菱形;(3)存在,如图:当ABBE时,四边形ABEP为矩形,则t1=3,解得t=,则A(3,),OE=t1=,此时P点坐标为(,);当ABEA,如图,四边形ABP
30、E为矩形,作AQx轴于Q,AEA=120,AEB=60,EBA=30BQ=AQ=t=t,t1+t=3,解得t=,此时A(1,),E(,0),点A向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,),综上所述,满足条件的P点坐标为(,)或(,)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质22、甲有钱,乙有钱.【解析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方
31、程组求解即可【详解】解:设甲有钱,乙有钱. 由题意得: ,解方程组得: ,答:甲有钱,乙有钱.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键23、(1)详见解析(2)2400【解析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.532.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=10041224364=1补全频数分布直方图如下:(2)
32、优秀的人数所占的比例是:=0.6,该县中考体育成绩优秀学生人数约为:40000.6=2400(人)24、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利用切线的性质得COCD,则ADCO,所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接OC,如图,CD与O相切于点E,COCD,ADCD,ADCO,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60,S阴影=SCOES扇形COB=33【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式