《浙江省金华婺城区四校联考2023年中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省金华婺城区四校联考2023年中考数学全真模拟试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,AB是O的直径,弦CDAB于E,CDB=30,O的半径为,则弦CD的长为( )AB3cmCD9cm2若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )A1,2,3B1,2
2、C1,3D2,33将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A10cmB30cmC45cmD300cm4若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da45甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:甲、乙两班学生的平均成绩相同;乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀);甲班成绩的波动比乙班大上述结论中,正确的是()ABCD6已知a=(+1)
3、2,估计a的值在()A3 和4之间B4和5之间C5和6之间D6和7之间7据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为A元B元C元D元8二次函数y=ax2+bx+c(a0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:4a+b=0;9a+c3b;8a+7b+2c0;当x-1时,y的值随x值的增大而增大.其中正确的结论有( )A1个B2个C3个D4个9在实数0,4中,最小的数是( )A0BCD410如图,平行于BC的直线DE把ABC分成面积相等的两部分,则的值为()A1BC-1
4、D+111有下列四个命题:相等的角是对顶角;两条直线被第三条直线所截,同位角相等;同一种正五边形一定能进行平面镶嵌;垂直于同一条直线的两条直线互相垂直其中假命题的个数有()A1个 B2个 C3个 D4个12用配方法解下列方程时,配方有错误的是( )A化为B化为C化为D化为二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,垂直于x轴的直线AB分别与抛物线C1:yx2(x0)和抛物线C2:y(x0)交于A,B两点,过点A作CDx轴分别与y轴和抛物线C2交于点C、D,过点B作EFx轴分别与y轴和抛物线C1交于点E、F,则 的值为_14将一些形状相同的小五角星如图所示的规律摆放,据此规律
5、,第10个图形有_个五角星.15一次函数y=kx+b(k0)的图象如图所示,那么不等式kx+b0的解集是_16将一副直角三角板如图放置,使含30角的三角板的直角边和含45角的三角板一条直角边在同一条直线上,则1的度数为_ 17如图所示,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则AED的正切值等于_18一元二次方程x24=0的解是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如果a2+2a-1=0,求代数式的值.20(6分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励为了确定一
6、个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下频数分布表组别一二三四五六七销售额频数79322数据分析表平均数众数中位数20.318请根据以上信息解答下列问题:填空:a=,b=,c=;若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由21(6分)如图,正方形ABCD中,E,F分别为BC,CD上的
7、点,且AEBF,垂足为G(1)求证:AEBF;(2)若BE,AG2,求正方形的边长22(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组求解一元二次方程,把它转化为两个一元一次方程来解求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知用“转化”的数学思想,我们还可以解一些新的方程例如,一元三次方程x3+x2-2x=0,可以通过因式分解把
8、它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C求AP的长23(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图根据图中信息解答下列问题
9、:(1)该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?24(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O画出AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论25(10分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若A=D,CD=2(1)求A的度数(2)求图
10、中阴影部分的面积26(12分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE若DE:AC=3:5,求的值27(12分)抛物线y=ax2+bx+3(a0)经过点A(1,0),B(,0),且与y轴相交于点C(1)求这条抛物线的表达式;(2)求ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCE与AOC相似时,求点D的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】解:CDB=30,COB=60,又OC=,CDAB于点E,解得CE
11、=cm,CD=3cm故选B考点:1垂径定理;2圆周角定理;3特殊角的三角函数值2、C【解析】试题分析:解分式方程得:等式的两边都乘以(x2),得x=2(x2)+m,解得x=4m,且x=4m2,已知关于x的分式方的解为正数,得m=1,m=3,故选C考点:分式方程的解3、A【解析】根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。4、A【解析】分式有意
12、义时,分母a-40【详解】依题意得:a40,解得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大5、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大故正确,故选D点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型6、D【解析】首先计算平方,然后再确定的范围,进而可得4+的范围【详解】解:a=(7+1+2)=4+,23,64+7,a的值在6和7之间,故选D【点睛】此题主要考查了估算无理数的大小,用有理数
13、逼近无理数,求无理数的近似值7、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】亿=115956000000,所以亿用科学记数法表示为1.159561011,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、B【解析】根据抛物线的对称轴即可判定;观察图象可得,当x=-3时,y0,由此即可判定;观察图象可得,当x=1时,y0,由此即可判定;观察图象可得,当x2时,的值随值的增大而增大,即可判定.【详解】由抛物线的对称轴为x=2可得=2,
14、即4a+b=0,正确;观察图象可得,当x=-3时,y0,即9a-3b+c0,所以,错误;观察图象可得,当x=1时,y0,即a+b+c0,正确;观察图象可得,当x2时,的值随值的增大而增大,错误综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点 抛物线与y轴交于(0,c);抛物线
15、与x轴交点个数由决定,=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点9、D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】正数大于0和一切负数,只需比较-和-1的大小,|-|-1|,最小的数是-1故选D【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小10、C【解析】【分析】由DEBC可得出ADEABC,利用相似三角形的性质结合SADE=S四边形BCED,可得出,结合BD=ABAD即可求出的值【详
16、解】DEBC,ADE=B,AED=C,ADEABC,SADE=S四边形BCED,SABC=SADE+S四边形BCED,故选C【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键11、D【解析】根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断【详解】解:对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;正五边形的内角和为540,则其内角为108,而360并不是108的整数倍,不能进行平面镶嵌,故为假命题;在同一平面内,垂直于同一条直线的两条直线平行,故为假命题
17、故选:D【点睛】本题考查了命题与证明对顶角,垂线,同位角,镶嵌的相关概念关键是熟悉这些概念,正确判断12、B【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方【详解】解:、,故选项正确、,故选项错误、,故选项正确、,故选项正确故选:【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点横坐标为
18、,则点纵坐标为,点B的纵坐标为 ,BEx轴,点F纵坐标为,点F是抛物线上的点,点F横坐标为,轴,点D纵坐标为,点D是抛物线上的点,点D横坐标为,故答案为【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.14、1【解析】寻找规律:不难发现,第1个图形有3=221个小五角星;第2个图形有8=321个小五角星;第3个图形有15=421个小五角星;第n个图形有(n1)21个小五角星第10个图形有1121=1个小五角星15、x1【解析】一次函数y=kx+b的图象在x轴下方时,y0,再根据图象写出解集即可【详解】当不等式kx+b0时,一次函数y=kx+b的
19、图象在x轴下方,因此x1故答案为:x1【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.16、75【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45,然后根据三角形内角与外角的关系可得1的度数【详解】ACB=DFE=90,ACB+DFE=180,ACDF,2=A=45,1=2+D=45+30=75故答案为:75【点睛】本题考查了平行线的判定与性质,三角形外角的
20、性质,求出2=A=45是解题的关键17、【解析】根据同弧或等弧所对的圆周角相等来求解【详解】解:E=ABD,tanAED=tanABD=故选D【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解18、x=1【解析】移项得x1=4,x=1故答案是:x=1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1 【解析】=1.故答案为1.20、 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标【解析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a3,b4,再根据数据可得1
21、5出现了5次,出现次数最多,所以众数c15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标【详解】解:(1)在范围内的数据有3个,在范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标【点睛】本题考査了对样本数据进行分析
22、的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数并利用中位数的意义解决实际问题.21、(1)见解析;(2)正方形的边长为.【解析】(1)由正方形的性质得出ABBC,ABCC90,BAE+AEB90,由AEBF,得出CBF+AEB90,推出BAECBF,由ASA证得ABEBCF即可得出结论;(2)证出BGEABE90,BEGAEB,得出BGEABE,得出BE2EGAE,设EGx,则AEAG+EG2+x,代入求出x,求得AE3,由勾股定理即可得出结果【详解】(1)证明:四边形ABCD是正方形,ABBC,ABCC90,BAE
23、+AEB90,AEBF,垂足为G,CBF+AEB90,BAECBF,在ABE与BCF中,ABEBCF(ASA),AEBF;(2)解:四边形ABCD为正方形,ABC90,AEBF,BGEABE90,BEGAEB,BGEABE,即:BE2EGAE, 设EGx,则AEAG+EG2+x,()2x(2+x),解得:x11,x23(不合题意舍去),AE3,AB【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键22、 (1)-2,1;(2)x=3;(3)4m.【解析】(1)因式分解多项式,然后得结论;(2)两
24、边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1),所以或或,;故答案为,1;(2),方程的两边平方,得即或,当时,所以不是原方程的解所以方程的解是;(3)因为四边形是矩形,所以,设,则因为, 两边平方,得整理,得两边平方并整理,得即所以经检验,是方程的解答:的长为【点睛】考查了转化的思想方法,一元二次方程的解法解无理方程是注意到验根解决(3)时,根据勾股定理和绳长,列出方程是关键23、(1)2400,60;(2)见解析;(3)500【解析】整体分析
25、:(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:120050%=2400个,A品牌所占的圆心角:360=60;故答案为2400,60;(2)B品牌鸡蛋的数量为:24004001200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:1500=500个24、(1)如图所示见解析;(2)四边形OCED是菱形理由见解析.【解析】(1)根据图形平移的性质画出平移后的DEC即可;(2)根据图形平移的性质得出ACDE,OA=DE,故四边形OCED是平行四边
26、形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论【详解】(1)如图所示;(2)四边形OCED是菱形理由:DEC由AOB平移而成,ACDE,BDCE,OA=DE,OB=CE,四边形OCED是平行四边形四边形ABCD是矩形,OA=OB,DE=CE,四边形OCED是菱形【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.25、 (1) A=30;(2) 【解析】(1)连接OC,由过点C的切线交AB的延长线于点D,推出OCCD,推出OCD=90,即D+COD=90,由OA=OC,推出A=ACO,由A=D,推出A=ACO=D再由A+ACD+D=18090=9
27、0即可得出.(2)先求COD度数及OC长度,即可求出图中阴影部分的面积【详解】解:(1)连结OCCD为O的切线OCCDOCD=90又OA=OCA=ACO又A=DA=ACO=D而A+ACD+D=18090=90A=30(2)由(1)知:D=A=30COD=60又CD=2OC=2S阴影=【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.26、【解析】根据翻折的性质可得BAC=EAC,再根据矩形的对边平行可得ABCD,根据两直线平行,内错角相等可得DCA=BAC,从而得到EAC=DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再
28、求出DF=EF,从而得到ACF和EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在RtADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解【详解】解:矩形沿直线AC折叠,点B落在点E处,CEBC,BACCAE,矩形对边ADBC,ADCE,设AE、CD相交于点F,在ADF和CEF中,ADFCEF(AAS),EFDF,ABCD,BACACF,又BACCAE,ACFCAE,AFCF,ACDE,ACFDEF,设EF3k,CF5k,由勾股定理得CE,ADBCCE4k,又CDDFCF3k5k8k,ABCD8k,AD:AB(4k):(8k)【点睛】本
29、题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出ACF和DEF相似是解题的关键,也是本题的难点27、(1)y=2x2+x+3;(2)ACB=41;(3)D(,)【解析】试题分析:把点的坐标代入即可求得抛物线的解析式.作BHAC于点H,求出的长度,即可求出ACB的度数.延长CD交x轴于点G,DCEAOC,只可能CAO=DCE.求出直线的方程,和抛物线的方程联立即可求得点的坐标.试题解析:(1)由题意,得解得 这条抛物线的表达式为(2)作BHAC于点H,A点坐标是(1,0),C点坐标是(0,3),B点坐标是(,0),AC=,AB=,OC=3,BC= ,即BAD=, Rt BCH中,BC=,BHC=90,又ACB是锐角, (3)延长CD交x轴于点G,Rt AOC中,AO=1,AC=, DCEAOC,只可能CAO=DCEAG = CG AG=1G点坐标是(4,0)点C坐标是(0,3), 解得,(舍).点D坐标是