《湖北省孝感市孝南区八校(长湖中学2023届中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省孝感市孝南区八校(长湖中学2023届中考适应性考试数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,AC是O的直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A3cmB cmC2.5cmD cm2已知二次函数y=ax2+bx+c(a1)的图象如图所示,则下列结论:a、b同号
2、;当x=1和x=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个3如图,点A所表示的数的绝对值是()A3B3CD4已知直线mn,将一块含30角的直角三角板ABC按如图方式放置(ABC=30),其中A,B两点分别落在直线m,n上,若1=20,则2的度数为()A20B30C45D505分式的值为0,则x的取值为( )Ax=-3Bx=3Cx=-3或x=1Dx=3或x=-16如图,ABC中,若DEBC,EFAB,则下列比例式正确的是( )ABCD7如图是半径为2的半圆,点C是弧AB的中点,现将半圆如图方式翻折,使得点C与圆心O重合,
3、则图中阴影部分的面积是( )ABC2+D28下列汽车标志中,不是轴对称图形的是( )ABCD9今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )Ax(x-60)=1600Bx(x+60)=1600C60(x+60)=1600D60(x-60)=160010若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y图象上的点,并且y10y2y3,则下列各式中正确的是()Ax1x2x3Bx1x3x2Cx2x1x
4、3Dx2x3x1二、填空题(共7小题,每小题3分,满分21分)11如图,在直角三角形ABC中,ACB=90,CA=4,点P是半圆弧AC的中点,连接BP,线段即把图形APCB(指半圆和三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是_12已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_厘米13计算的结果是_14计算:_15如图,点A,B是反比例函数y=(x0)图象上的两点,过点A,B分别作ACx轴于点C,BDx轴于点D,连接OA,BC,已知点C(2,0),
5、BD=2,SBCD=3,则SAOC=_16分解因式:2a44a2+2_17掷一枚材质均匀的骰子,掷得的点数为合数的概率是_ .三、解答题(共7小题,满分69分)18(10分)已知如图,在ABC中,B45,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论19(5分)若关于的方程无解,求的值.20(8分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图 成绩分组组中值频数25x
6、3027.5430x3532.5m35x4037.52440x45a3645x5047.5n50x5552.54(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?21(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元152025y/件252015已知日销售量y是销售价x的一次函数求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?22(10分)观察下列等式:222112+1322
7、222+1422332+1第个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性23(12分)如图,四边形ABCD中,C90,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30,DC,求EC的长.24(14分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理
8、得出BC的长,再利用相似三角形的判定和性质解答即可详解:连接OB,AC是O的直径,弦BDAO于E,BD=1cm,AE=2cm在RtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,OB=3+2=5,EC=5+3=1在RtEBC中,BC=OFBC,OFC=CEB=90C=C,OFCBEC,即,解得:OF= 故选D点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长2、A【解析】根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时,函数值相等,故错误,-2,得4a+b=1,故正确,由图象
9、可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答3、A【解析】根据负数的绝对值是其相反数解答即可【详解】|-3|=3,故选A【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答4、D【解析】根据两直线平行,内错角相等计算即可.【详解】因为mn,所以2=1+30,所以2=30+20=50,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.5、A【解析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2
10、两个条件需同时具备,缺一不可据此可以解答本题【详解】原式的值为2,(x-2)(x+3)=2,即x=2或x=-3;又|x|-22,即x2x=-3故选:A【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件6、C【解析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解【详解】解:DEBC,BDBC,选项A不正确;DEBC,EFAB,EF=BD,选项B不正确;EFAB,选项C正确;DEBC,EFAB,=,CEAE,选项D不正确;故选C【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健7、D【
11、解析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到POM=60,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OCMN,且OP=PC=1,在RtMOP中,OM=2,OP=1,cosPOM=,AC=,POM=60,MN=2MP=2,AOB=2AOC=120,则图中阴影部分的面积=S半圆-2S弓形MCN=22-2(-21)=2- ,故选D.【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.8、C【解析】根据轴对称图形
12、的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合9、A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x60)米,根据长方形的面积计算法则列出方程考点:一元二次方程的应用10、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y10y2y3判断出三点所在的象限,故可得出结论【详解】解:反比例函数y中k10,此函数的图象在二、四象限,且在每
13、一象限内y随x的增大而增大,y10y2y3,点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,x2x3x1故选:D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键二、填空题(共7小题,每小题3分,满分21分)11、4【解析】连接把两部分的面积均可转化为规则图形的面积,不难发现两部分面积之差的绝对值即为的面积的2倍【详解】解:连接OP、OB,图形BAP的面积=AOB的面积+BOP的面积+扇形OAP的面积,图形BCP的面积=BOC的面积+扇形OCP的面积BOP的面积,又点P是半圆弧AC的中点,OA=OC,扇形OAP的面积
14、=扇形OCP的面积,AOB的面积=BOC的面积,两部分面积之差的绝对值是 点睛:考查扇形面积和三角形的面积,把不规则图形的面积转化为规则图形的面积是解题的关键.12、1或5.【解析】小正方形的高不变,根据面积即可求出小正方形平移的距离【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为221,如图,小正方形平移距离为1厘米;如图,小正方形平移距离为4+15厘米故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变画出图形即可直观解答13、1【解析】分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果详解:原式 故答案为:1. 点睛:
15、本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母14、【解析】先把化简为2,再合并同类二次根式即可得解.【详解】2-=.故答案为.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键15、1【解析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可【详解】BDCD,BD=2,SBCD=BDCD=2,即CD=2C(2,0),即OC=2,OD=OC+CD=2+2=1,B(1,2),代入反比例解析式得:k=10,即y=,则SAOC
16、=1 故答案为1【点睛】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键16、1(a+1)1(a1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式17、【解析】分析:根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数
17、目;二者的比值就是其发生的概率详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为= 故答案为点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比三、解答题(共7小题,满分69分)18、(1)90;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45,AEC
18、ECB+B90;(1)AE1+EB1AC1AEC90,AE1+EC1AC1,EBEC,AE1+EB1AC1【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键19、【解析】分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1(1)把x=0代入(a+2)x=1,a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0x=1,x无解即a=-
19、2时,整式方程无解综上所述,当a=1或a=-2时,原方程无解故答案为a=1或a=-2点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形20、(1)详见解析(2)2400【解析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.532.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=10041224364=1补全频数分布直方图如下:(2)优秀的人数所占的比例
20、是:=0.6,该县中考体育成绩优秀学生人数约为:40000.6=2400(人)21、();()此时每天利润为元【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,;()将代入()中函数表达式得:,利润(元),答:此时每天利润为元22、(1)522442+1;(2)(n+1)22nn2+1,证明详见解析【解析】(1)根据的规律即可得出第个等式;(2)第n个等式为(n+1)22nn2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边【详解】(1)222112+13
21、22222+1422332+1第个等式为522442+1,故答案为:522442+1,(2)第n个等式为(n+1)22nn2+1(n+1)22nn2+2n+12nn2+1【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键23、(1)见解析;(2).【解析】(1)直接利用直角三角形的性质得出,再利用DEBC,得出23,进而得出答案;(2)利用已知得出在RtBCD中,360,得出DB的长,进而得出EC的长.【详解】(1)证明:ADDB,点E为AB的中点,.12.DEBC,23.13.BD平分ABC.(2)解:ADDB,A30,160.3260.BCD90,430.CDE2+49
22、0.在RtBCD中,360,DB2.DEBE,160,DEDB2.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.24、见解析【解析】(1)根据平行四边形的性质可得ABDC,OB=OD,由平行线的性质可得OBE=ODF,利用ASA判定BOEDOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EFBD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形【详解】(1)四边形ABCD是平行四边形,O是BD的中点,ABDC,OB=OD,OBE=ODF,又BOE=DOF,BOEDOF(ASA),EO=FO,四边形BEDF是平行四边形;(2)EFBD四边形BEDF是平行四边形,EFBD,平行四边形BEDF是菱形【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.