海南省乐东县重点达标名校2023届中考联考数学试卷含解析.doc

上传人:lil****205 文档编号:88307533 上传时间:2023-04-25 格式:DOC 页数:16 大小:640.50KB
返回 下载 相关 举报
海南省乐东县重点达标名校2023届中考联考数学试卷含解析.doc_第1页
第1页 / 共16页
海南省乐东县重点达标名校2023届中考联考数学试卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《海南省乐东县重点达标名校2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《海南省乐东县重点达标名校2023届中考联考数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)13的倒数是( )ABCD2将(x+3)2(x1)2分解因式的结果是()A4(2x+2)B8x+8C8(x+1)D 4(x+1)3矩形ABCD的顶点坐标分别为A(1,

2、4)、B(1,1)、C(5,1),则点D的坐标为( )A(5,5)B(5,4)C(6,4)D(6,5)4一元二次方程x23x+1=0的根的情况()A有两个相等的实数根B有两个不相等的实数根C没有实数根D以上答案都不对5下列图案中,是轴对称图形的是( )ABCD6九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的

3、直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A13寸B20寸C26寸D28寸7在O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A3B4C5D68若a+|a|=0,则等于()A22aB2a2C2D29某商品价格为元,降价10后,又降价10,因销售量猛增,商店决定再提价20,提价后这种商品的价格为( )A0.96元B0.972元C1.08元D元10如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD二、填空题(共7小题,每小题3分,满分21分)11方程=的解是_12如图,在RtAOB中,直角边OA、OB分别

4、在x轴的负半轴和y轴的正半轴上,将AOB绕点B逆时针旋转90后,得到AOB,且反比例函数y的图象恰好经过斜边AB的中点C,若SABO4,tanBAO2,则k_13一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别现从袋子中随机摸出一个球,则它是黑球的概率是_14如图,定长弦CD在以AB为直径的O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CPAB于点P,若CD=3,AB=8,PM=l,则l的最大值是 15如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 16如图ABC中,C=90,AC=8cm,AB的垂直平分线M

5、N交AC于D,连接BD,若cosBDC=,则BC的长为_17关于x的不等式组的整数解有4个,那么a的取值范围( )A4a6B4a6C4a6D2a4三、解答题(共7小题,满分69分)18(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元152025y/件252015已知日销售量y是销售价x的一次函数求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?19(5分)如图,在ABC中,BAC90,ADBC于点D,BF平分ABC交AD于点E,交AC于点F,求证:AEAF20(

6、8分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(4x4),解决下列问题:当点G与点D重合时,求平移距离m的值;用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,

7、垂足为F,连接FD是否存在点F,使FDP与FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由21(10分) (1)计算:(ab)2a(a2b); (2)解方程:22(10分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.求点B的坐标;若ABC的面积为4,求的解析式23(12分) (1)解方程: +4(2)解不等式组并把解集表示在数轴上:.24(14分)如图,AD是等腰ABC底边BC上的高,点O是AC中点,延长DO到E,使AEBC,连接AE求证:四边形ADCE是矩形;若AB17,BC16,则四边形ADCE的面积 若AB1

8、0,则BC 时,四边形ADCE是正方形参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据倒数的定义可知解:3的倒数是主要考查倒数的定义,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数2、C【解析】直接利用平方差公式分解因式即可【详解】(x3)2(x1)2(x3)(x1)(x3)(x1)4(2x2)8(x1)故选C【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键3、B【解析】由矩形的性质可得ABCD,AB=CD,AD=BC,ADBC,即可求点D坐标

9、【详解】解:四边形ABCD是矩形ABCD,AB=CD,AD=BC,ADBC,A(1,4)、B(1,1)、C(5,1),ABCDy轴,ADBCx轴点D坐标为(5,4)故选B【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.4、B【解析】首先确定a=1,b=-3,c=1,然后求出=b2-4ac的值,进而作出判断【详解】a=1,b=-3,c=1,=(-3)2-411=50,一元二次方程x2-3x+1=0两个不相等的实数根;故选B【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数;(3)0方程没有实数根

10、5、B【解析】根据轴对称图形的定义,逐一进行判断.【详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.故选B.【点睛】本题考查的是轴对称图形的定义.6、C【解析】分析:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,O的直径为26寸,故选C点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题7、A【解析】解:作OCAB于C,连结OA,如图OCAB,AC=BC=AB=8=

11、1在RtAOC中,OA=5,OC=,即圆心O到AB的距离为2故选A8、A【解析】直接利用二次根式的性质化简得出答案【详解】a+|a|=0,|a|=-a,则a0,故原式=2-a-a=2-2a故选A【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键9、B【解析】提价后这种商品的价格=原价(1-降低的百分比)(1-百分比)(1+增长的百分比),把相关数值代入求值即可【详解】第一次降价后的价格为a(1-10%)=0.9a元,第二次降价后的价格为0.9a(1-10%)=0.81a元,提价20%的价格为0.81a(1+20%)=0.972a元,故选B【点睛】本题考查函数模型的选择与应用

12、,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键10、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分二、填空题(共7小题,每小题3分,满分21分)11、x=1【解析】观察可得方程最简公分母为x(x1),去分母,转化为整式方程求解,结果要检验【

13、详解】方程两边同乘x(x1)得:3x1(x1),整理、解得x1检验:把x1代入x(x1)2x1是原方程的解,故答案为x1【点睛】解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验12、1【解析】设点C坐标为(x,y),作CDBO交边BO于点D,tanBAO=2,=2,SABO=AOBO=4,AO=2,BO=4,ABOAOB,AO=AO=2,BO=BO=4,点C为斜边AB的中点,CDBO,CD=AO=1,BD=BO=2,x=BOCD=41=3,y=BD=2,k=xy=32=1故答案

14、为113、【解析】根据概率的概念直接求得.【详解】解:46=.故答案为:.【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.14、4【解析】当CDAB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可【详解】当CDAB时,PM长最大,连接OM,OC,CDAB,CPCD,CPAB,M为CD中点,OM过O,OMCD,OMC=PCD=CPO=90,四边形CPOM是矩形,PM=OC,O直径AB=8,半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.

15、15、8【解析】圆锥的侧面积就等于母线长乘底面周长的一半依此公式计算即可【详解】侧面积=442=8故答案为8【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系16、4【解析】试题解析: 可设DC=3x,BD=5x,又MN是线段AB的垂直平分线,AD=DB=5x,又AC=8cm,3x+5x=8,解得,x=1,在RtBDC中,CD=3cm,DB=5cm, 故答案为:4cm.17、C【解析】分析:先根据一元一次不等式组解出x的取值,再根据不等式组的整数解有4个,求出实数a的取值范围详解: 解不等式,得 解不等式,得 原不等式组的解集为

16、只有4个整数解,整数解为: 故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.三、解答题(共7小题,满分69分)18、();()此时每天利润为元【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,;()将代入()中函数表达式得:,利润(元),答:此时每天利润为元19、见解析【解析】根据角平分线的定义可得ABF=CBF,由已知条件可得ABF+AFB=CBF+BED=90,根据余角的性质可得AFB=BED

17、,即可求得AFE=AEF,由等腰三角形的判定即可证得结论【详解】BF 平分ABC,ABF=CBF,BAC=90,ADBC,ABF+AFB=CBF+BED=90,AFB=BED,AEF=BED,AFE=AEF,AE=AF【点睛】本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得AFB=BED是解题的关键20、(3)(4,6);(3)-3;4;(2)F的坐标为(3,0)或(3,)【解析】(3)先将A(3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4

18、,6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GFx轴,故可得F的纵坐标, 再将y=2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据FDP与FDG的面积比为3:3,故PD:DG=3:3已知FPHD,则FH:HG=3:3再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(3,0),B(4,0),代入y=ax3+bx+2得:

19、,解得:,抛物线的表达式为y=x3+x+2,把E(4,y)代入得:y=6,点E的坐标为(4,6)(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入得:,解得:,直线BD的表达式为y=x2把x=0代入y=x2得:y=2,D(0,2)当点G与点D重合时,G的坐标为(0,2)GFx轴,F的纵坐标为2将y=2代入抛物线的解析式得:x3+x+2=2,解得:x=+3或x=+34x4,点F的坐标为(+3,2)m=FG=3设点F的坐标为(x,x3+x+2),则点G的坐标为(x+m,(x+m)2),x3+x+2=(x+m)2,化简得,m=x3+4,0,m有最大值,当x=0时,m的最大值为4

20、(2)当点F在x轴的左侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x,x2),x3+x+2=x2,整理得:x36x36=0,解得:x=3或x=4(舍去),点F的坐标为(3,0)当点F在x轴的右侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x, x2),x3+x+2=x2,整理得:x3+3x36=0,解得:x=3或x=3(舍去),点F的坐标为(3,)综上所述,点F的坐标为(3,0)或(3,)【

21、点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.21、 (1) b2 (2)1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根详解:(1) 解:原式a22abb2a22ab b2 ;(2) 解:, 解得:x1, 经检验 x1为原方程的根, 所以原方程的解为x1点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型理解计算法则是解题的关键分式方程最后必须要进行验根22、(1)(0,3);(2)【解析】(1)在RtAOB中,由勾股定理

22、得到OB=3,即可得出点B的坐标;(2)由=BCOA,得到BC=4,进而得到C(0,-1)设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式【详解】(1)在RtAOB中,OB=3,点B的坐标是(0,3) (2)=BCOA,BC2=4,BC=4,C(0,-1)设的解析式为, 把A(2,0),C(0,-1)代入得:,的解析式为是考点:一次函数的性质23、(1)x=1(2)4x 【解析】(1)先将整理方程再乘以最小公分母移项合并即可;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可【详解】(1)+=4,方程整理得: =4,去分母得:x5=4(2x3),移项合并得:7x=7

23、,解得:x=1;经检验x=1是分式方程的解;(2)解得:x解得:x4不等式组的解集是4x,在数轴上表示不等式组的解集为:【点睛】本题考查了解一元二次方程组与分式方程,解题的关键是熟练的掌握解一元二次方程组与分式方程运算法则.24、 (1)见解析;(2)1; .【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出ADC=90,根据矩形的判定得出即可;(2)求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;要使ADCE是正方形,只需要ACDE,即DOC=90,只需要OD2+OC2=DC2,即可得到BC的长试题解析:(1)证明:AEBC,AEO=CDO又AOE=COD,OA=OC,AOECOD,OE=OD,而OA=OC,四边形ADCE是平行四边形AD是BC边上的高,ADC=90ADCE是矩形(2)解:AD是等腰ABC底边BC上的高,BC=16,AB=17,BD=CD=8,AB=AC=17,ADC=90,由勾股定理得:AD=12,四边形ADCE的面积是ADDC=128=1当BC=时,DC=DB=ADCE是矩形,OD=OC=2OD2+OC2=DC2,DOC=90,ACDE,ADCE是正方形点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁