《浙江省台州院附中2022-2023学年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省台州院附中2022-2023学年中考五模数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1不等式组的解在数轴上表示为( )ABCD2有一圆形苗圃
2、如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC3如图,已知ABCD,1=115,2=65,则C等于()A40B45C50D604某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同设现在每天生产x台机器,根据题意可得方程为()ABCD5关于二次函数,下列说法正确的是( )A图像与轴的交点坐标为B图像
3、的对称轴在轴的右侧C当时,的值随值的增大而减小D的最小值为-36某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )ABCD7下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个8的化简结果为A3BCD99如果t0,那么a+t与a的大小关系是( )Aa+ta Ba+ta Ca+ta D不能确定10如图,已知AB是O的直径,弦CDAB于E,连接BC、BD、AC,下列结论中不一定正确的是()AACB=90BOE=BECBD=BCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平面直角坐标系中
4、有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当ABM是等腰三角形时,M点的坐标为_12如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A滑行至B,已知AB500米,则这名滑雪运动员的高度下降了_米(参考数据:sin340.56,cos340.83,tan340.67)132018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有_万人14将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_个五角星.15某同
5、学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_16如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则PAB的面积是_三、解答题(共8题,共72分)17(8分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以
6、30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?18(8分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖若某单位想要买5个水瓶和n(n10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买)19(8分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角ACB=60,支架AF的长为2.50米,篮板顶端F点到篮筐
7、D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角FHE=45,求篮筐D到地面的距离(精确到0.01米参考数据:1.73,1.41)20(8分)已知平行四边形ABCD中,CE平分BCD且交AD于点E,AFCE,且交BC于点F 求证:ABFCDE; 如图,若1=65,求B的大小21(8分)如图,已知点A(2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标22(
8、10分)计算:(1)12018+|2|+2cos30;(2)(a+1)2+(1a)(a+1);23(12分)如图,抛物线yax2+bx2经过点A(4,0),B(1,0)(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求DCA面积的最大值;(3)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由24如图,在四边形ABCD中,ABC90,AB3,BC4,CD10,DA5,求BD的长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先解每一个不等式,再根
9、据结果判断数轴表示的正确方法【详解】解:由不等式,得3x5-2,解得x1,由不等式,得-2x1-5,解得x2,数轴表示的正确方法为C故选C【点睛】考核知识点:解不等式组.2、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂
10、图形,认真分析是解题的关键.3、C【解析】分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得C的度数详解:ABCD, 故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和. 4、A【解析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间【详解】现在每天生产x台机器,则原计划每天生产(x30)台机器依题意得:,故选A【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5、D【解析】分析:根据题目中的函数解析式
11、可以判断各个选项中的结论是否成立,从而可以解答本题详解:y=2x2+4x-1=2(x+1)2-3,当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答6、B【解析】试题解析:列表如下:共有20种等可能的结果,P(一男一女)=故选B7、A【解析】3+3=6,错误,无法计算; =1,错误;+=2不能计算;=2,正确.故选A.8、A【解析】试题分析:根据二次根式的计算化简可
12、得:故选A考点:二次根式的化简9、A【解析】试题分析:根据不等式的基本性质即可得到结果.t0,ata,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.10、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90,故A正确;点E不一定是OB的中点,OE与BE的关系不能确定,故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键二、填空题(本大题共6个小题,每小题
13、3分,共18分)11、(4,6),(82,6),(2,6)【解析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标【详解】解:当M为顶点时,AB长为底=8,M在DC中点上, 所以M的坐标为(4, 6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME=2所以M的坐标为(82,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF=2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(82,6),(2,6);故答案为:(4,6),(82,6),(2,6)【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是
14、根据对等腰三角形性质的掌握和勾股定理的应用.12、1【解析】试题解析:在RtABC中,sin34=AC=ABsin34=5000.56=1米.故答案为1.13、1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得详解:出境游东南亚地区的游客约有700(116%15%11%13%)=70045%=1(万)故答案为1点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用14、1【解析】寻找规律:不难发现,第1个图形有3=221个小五角星;第2个图形有8=321个小五角星;第3个图形有15=421个小五角星;第n个图形有(n1)21
15、个小五角星第10个图形有1121=1个小五角星15、乙【解析】据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定
16、16、【解析】解:把x=1分别代入、,得y=1、y=,A(1,1),B(1,)P为y轴上的任意一点,点P到直线BC的距离为1PAB的面积故答案为:三、解答题(共8题,共72分)17、(1)y=0.8x60(0x200)(2)159份【解析】解:(1)y=(10.5)x(0.50.2)(200x)=0.8x60(0x200)(2)根据题意得:30(0.8x60)2000,解得x小丁每天至少要买159份报纸才能保证每月收入不低于2000元(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每
17、天卖出报纸x份,纯收入为y元,则y=(10.5)x(0.50.2)(200x)即y=0.8x60,其中0x200且x为整数(2)因为每月以30天计,根据题意可得30(0.8x60)2000,解之求解即可18、(1)一个水瓶40元,一个水杯是8元;(2)当10n25时,选择乙商场购买更合算当n25时,选择甲商场购买更合算【解析】(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意得:3x+4(48x)152,解得:x40,则一个水瓶40元,
18、一个水杯是8元;(2)甲商场所需费用为(405+8n)80%160+6.4n乙商场所需费用为540+(n52)8120+8n则n10,且n为整数,160+6.4n(120+8n)401.6n讨论:当10n25时,401.6n0,160+0.64n120+8n,选择乙商场购买更合算当n25时,401.6n0,即 160+0.64n120+8n,选择甲商场购买更合算【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.19、3.05米【解析】延长FE交CB的延长线于M, 过A作AGFM于G, 解直角三角形即可得到正确结论【详解】解:如图:延长FE交CB的延长线于
19、M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan60=1.51.73=2.595,GM=AB=2.595,在RtAGF中,FAG=FHE=45,sinFAG=,sin45=,FG=1.76,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键20、(1)证明见解析;(2)50【解析】试题分析:(1)由平行四边形的性质得出AB=CD,ADBC,B=D,得出1=DCE,证出AFB=1,由AAS证明ABFCDE即可;(2)由(1)得1=DCE=65,由平行四边形的性质和三角形内角和定理即可得
20、出结果试题解析:(1)四边形ABCD是平行四边形, AB=CD,ADBC,B=D, 1=DCE,AFCE, AFB=ECB, CE平分BCD, DCE=ECB, AFB=1,在ABF和CDE中, ABFCDE(AAS);(2)由(1)得:1=ECB,DCE=ECB, 1=DCE=65,B=D=180265=50考点:(1)平行四边形的性质;(2)全等三角形的判定与性质21、(1)y=x2+x+3;D(1,);(2)P(3,)【解析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B
21、和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标【详解】解:(1)设抛物线的解析式为y=a(x+2)(x4),将点C(0,3)代入得:8a=3,解得:a=,y=x2+x+3=(x1)2+,抛物线的解析式为y=x2+x+3,且顶点D(1,);(2)B(4,0),C(0,3),BC的解析式为:y=x+3,D(1,),当x=1时,y=+3=,E(1,),DE=-=,设P(m,m2+m+3),则F(m,m+3),四边形DEFP是平行四边形,且DEFP,DE=FP,即(m2+m+3
22、)(m+3)=,解得:m1=1(舍),m2=3,P(3,)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中22、 (1)1;(2)2a+2【解析】(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案【详解】解:(1)原式=1+2+2=1;(2)原式=a2+2a+1+1a2=2a+2.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型23、(1)y=x2+x2;(2)当t=2时,DAC面积最大为4;(3)符合条件的点P为(
23、2,1)或(5,2)或(3,14)【解析】(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与OAC相似,分当1m4时;当m1时;当m4时三种情况求出点P坐标即可【详解】(1)该抛物线过点A(4,0),B(1,0),将A与B代入解析式得:,解得:,则此抛物线的解析式为y=x2+x2;(2)如图,设D点的横坐标为t(0t4),则D点的纵坐标为t2+t2,过D作y轴的平行线交AC于E,由题意可求得
24、直线AC的解析式为y=x2,E点的坐标为(t,t2),DE=t2+t2(t2)=t2+2t,SDAC=(t2+2t)4=t2+4t=(t2)2+4,则当t=2时,DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为m2+m2,当1m4时,AM=4m,PM=m2+m2,又COA=PMA=90,当=2时,APMACO,即4m=2(m2+m2),解得:m=2或m=4(舍去),此时P(2,1);当=时,APMCAO,即2(4m)=m2+m2,解得:m=4或m=5(均不合题意,舍去)当1m4时,P(2,1);类似地可求出当m4时,P(5,2);当m1时,P(3,14),综上所述,符
25、合条件的点P为(2,1)或(5,2)或(3,14)【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论24、BD2.【解析】作DMBC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出ACD是直角三角形,ACD=90,证出ACB=CDM,得出ABCCMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可【详解】作DMBC,交BC延长线于M,连接AC,如图所示:则M90,DCM+CDM90,ABC90,AB3,BC4,AC2AB2+BC225,CD10,AD ,AC2+CD2AD2,ACD是直角三角形,ACD90,ACB+DCM90,ACBCDM,ABCM90,ABCCMD,CM2AB6,DM2BC8,BMBC+CM10,BD,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出ACD是直角三角形是解决问题的关键