海南省琼中县达标名校2023年中考数学最后一模试卷含解析.doc

上传人:lil****205 文档编号:88307416 上传时间:2023-04-25 格式:DOC 页数:18 大小:801.50KB
返回 下载 相关 举报
海南省琼中县达标名校2023年中考数学最后一模试卷含解析.doc_第1页
第1页 / 共18页
海南省琼中县达标名校2023年中考数学最后一模试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《海南省琼中县达标名校2023年中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《海南省琼中县达标名校2023年中考数学最后一模试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC中,BC4,P与ABC的边或边的延长线相切若P半径为2,ABC的面积为5,则ABC的周长为( )A8B10C13D142下列算式的运算结果正确的是()Am3m2=m6 Bm5m3=m2(m0)C(m2)3=m5

2、 Dm4m2=m23甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时到达C地求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时由题意列出方程其中正确的是()ABCD4估计5的值应在()A5和6之间B6和7之间C7和8之间D8和9之间5估计2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和46已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()ABC

3、D7将直线y=x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A4 B4 C2 D28设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )A-6B-5C-6或-5D6或59老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A5B9C15D2210若一组数据2,3,5,7的众数为7,则这组数据的中位数为( )A2B3C5D7二、填空题(共7小题,每小题3分,满分21分)11某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10x20且x为整数)出售,可卖出(20x)件,若使利润最大,

4、则每件商品的售价应为_元12如图,垂直于x轴的直线AB分别与抛物线C1:yx2(x0)和抛物线C2:y(x0)交于A,B两点,过点A作CDx轴分别与y轴和抛物线C2交于点C、D,过点B作EFx轴分别与y轴和抛物线C1交于点E、F,则 的值为_13如图,在RtABC中,ACB90,ABC30,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上,则旋转角度为_14如图,AB是O的直径,弦CD交AB于点P,AP2,BP6,APC30,则CD的长为_15已知图中的两个三角形全等,则1等于_16如图,的半径为,点,都在上,将扇形绕点顺时针旋转后恰好与扇形重合,则的长为_(结果保留)17如图,在Rt

5、ABC中,BAC=90,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_三、解答题(共7小题,满分69分)18(10分)如图,二次函数yx2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6)求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由19(5分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为

6、45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)20(8分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、求二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;21(10分)x取哪些整数值时,不等式5x23(x1)与x2x都成立?22(10分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球

7、个数是最初的两倍(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的_倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?23(12分)如图,在ABC中,BC40,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止求证:ABEACD;若ABBE,求DAE的度数;拓展:若ABD的外心在其内部时,求BDA的取值范围24(14分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且

8、ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据三角形的面积公式以及切线长定理即可求出答案【详解】连接PE、PF、PG,AP,由题意可知:PECPFAPGA90,SPBCBCPE424,由切线长定理可知:SPFC+SPBGSPBC4,S四边形AFPGSABC+SPFC+SPBG+SPBC5+4+413,由切线长定理可知:SAPGS四边形AFPG,

9、AGPG,AG,由切线长定理可知:CECF,BEBG,ABC的周长为AC+AB+CE+BEAC+AB+CF+BGAF+AG2AG13,故选C【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型2、B【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案【详解】A、m3m2=m5,故此选项错误;B、m5m3=m2(m0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键3、

10、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A4、C【解析】先化简二次根式,合并后,再根据无理数的估计解答即可【详解】5=,495464, 78, 5的值应在7和8之间,故选C【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小5、D【解析】先估算出的大致范围,然后再计算出2的大小,从而得到问题的答案【详解】253231,51原式=22=2,322故选D【点睛】本题主要考查的是二

11、次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键6、D【解析】解:设动车速度为每小时x千米,则可列方程为:=故选D7、A【解析】直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;y=kx

12、+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.8、A【解析】试题解析:x1,x2是方程x2-2x-1=0的两个实数根,x1+x2=2,x1x2=-1=.故选A.9、B【解析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数【详解】课外书总人数:625%24(人),看5册的人数:2

13、45649(人),故选B【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键10、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1故选C考点:众数;中位数.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】本题是营销问题,基本等量关系:利润每件利润销售量,每件利润每件售价每件进价再根据所列二次函数求最大值【详解】解:设利润为w元,则w(20x)(x10)(x1)2+25,10x20,当x1时,二次函数有最大值25,故答案是:1【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决

14、实际问题12、【解析】根据二次函数的图象和性质结合三角形面积公式求解.【详解】解:设点横坐标为,则点纵坐标为,点B的纵坐标为 ,BEx轴,点F纵坐标为,点F是抛物线上的点,点F横坐标为,轴,点D纵坐标为,点D是抛物线上的点,点D横坐标为,故答案为【点睛】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.13、60【解析】试题解析:ACB=90,ABC=30,A=90-30=60,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等边三角形,ACA=60,旋转角为60故答案为60.14、 【解析】如图,作OHCD于H,连结OC,根据

15、垂径定理得HC=HD,由题意得OA=4,即OP=2,在RtOPH中,根据含30的直角三角形的性质计算出OH=OP=1,然后在在RtOHC中,利用勾股定理计算得到CH=,即CD=2CH=2【详解】解:如图,作OHCD于H,连结OC,OHCD,HC=HD,AP=2,BP=6,AB=8,OA=4,OP=OAAP=2,在RtOPH中,OPH=30,POH=60,OH=OP=1,在RtOHC中,OC=4,OH=1,CH=,CD=2CH=2故答案为2.【点睛】本题主要考查了圆的垂径定理,勾股定理和含30角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可15、58【

16、解析】如图,2=1805072=58,两个三角形全等,1=2=58.故答案为58.16、【解析】根据题意先利用旋转的性质得到BOD=120,则AOD=150,然后根据弧长公式计算即可.【详解】解:扇形AOB绕点O顺时针旋转120后恰好与扇形COD重合,BOD=120,AOD=AOB+BOD=30+120=150,的长=故答案为:【点睛】本题考查了弧长的计算及旋转的性质,掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.17、2 【解析】过点E作EFBC于F,根据已知条件得到BEF是等腰直角三角形,求得BEABAE6,根据勾股定理得到BFEF3,求得DFBFBD,根据勾股定

17、理即可得到结论【详解】解:过点E作EFBC于F,BFE90,BAC90,ABAC4,BC45,BC4,BEF是等腰直角三角形,BEABAE6,BFEF3,D是BC的中点,BD2,DFBFBD,DE=2故答案为2【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键三、解答题(共7小题,满分69分)18、(1)y=x14x+6;(1)D点的坐标为(6,0);(3)存在当点C的坐标为(4,1)时,CBD的周长最小【解析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;(3)连接

18、CA,由于BD是定值,使得CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标【详解】(1)把A(1,0),B(8,6)代入,得解得:二次函数的解析式为;(1)由,得二次函数图象的顶点坐标为(4,1)令y=0,得,解得:x1=1,x1=6,D点的坐标为(6,0);(3)二次函数的对称轴上存在一点C,使得的周长最小连接CA,如图,点C在二次函数的对称轴x=4上,xC=4,CA=CD,的周长=CD+CB+BD=CA+CB+BD

19、,根据“两点之间,线段最短”,可得当点A、C、B三点共线时,CA+CB最小,此时,由于BD是定值,因此的周长最小设直线AB的解析式为y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:直线AB的解析式为y=x1当x=4时,y=41=1,当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短19、该雕塑的高度为(2+2)米【解析】过点C作CDAB,设CD=x,由CBD=45知BD=CD=x米,根据tanA=列出

20、关于x的方程,解之可得【详解】解:如图,过点C作CDAB,交AB延长线于点D,设CD=x米,CBD=45,BDC=90,BD=CD=x米,A=30,AD=AB+BD=4+x,tanA=,即,解得:x=2+2,答:该雕塑的高度为(2+2)米【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用20、(1);(2)或;(3)1.【解析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;(3)分别得出EO,AB的长,进而得出面积【详解】(1)二次函数与轴的交点为和设二次函数

21、的解析式为:在抛物线上,3=a(0+3)(0-1),解得a=-1,所以解析式为:;(2)=x22x3,二次函数的对称轴为直线; 点、是二次函数图象上的一对对称点;使一次函数大于二次函数的的取值范围为或;(3)设直线BD:ymxn,代入B(1,0),D(2,3)得,解得:,故直线BD的解析式为:yx1,把x0代入得,y=3,所以E(0,1),OE1,又AB1,SADE13111【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键21、2,1,0,1【解析】解不等式5x23(x1)得:得x2.5;解不等式x2x得x1.则这两个不等式解集的公共部分为 ,因为x取整数

22、,则x取2,1,0,1.故答案为2,1,0,1【点睛】本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).22、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答【详解】解:(1)依题意得:(3+2)(32)5故答案是:5;(2)依题意得:a+2+1a+3;故答案是:(a+3)(3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,依题意得:a1+x2axa+1所以 a+3xa+3(a+1)

23、2答:第三次变化后中间小桶中有2个小球【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答23、(1)证明见解析;(2);拓展:【解析】(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明ABEACD即可;(2)由等腰三角形的性质和三角形内角和定理求出BEA=EAB=70,证出AC=CD,由等腰三角形的性质得出ADC=DAC=70,即可得出DAE的度数;拓展:对ABD的外心位置进行推理,即可得出结论【详解】(1)证明:点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,BD=CE,BC-BD=BC-CE,即BE=CD,B=C

24、=40,AB=AC,在ABE和ACD中,ABEACD(SAS);(2)解:B=C=40,AB=BE,BEA=EAB=(180-40)=70,BE=CD,AB=AC,AC=CD,ADC=DAC=(180-40)=70,DAE=180-ADC-BEA=180-70-70=40;拓展:解:若ABD的外心在其内部时,则ABD是锐角三角形BAD=140-BDA90BDA50,又BDA90,50BDA90【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键24、 (1) ac3;(3)a=1;m或m【解析】(1)设A(p,q

25、)则B(-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1-1且-1x33:列方程组即可得到结论【详解】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析式可得:,3a

26、p3+3c=3即p3,3,ac3,3,ac3;(3)c=-1,p3,a3,且C(3,-1),p,SABC=31=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁