《河北省石家庄28中学2023年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省石家庄28中学2023年中考冲刺卷数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )ABCD2如图是由4个相同的正方体搭成的几何体,则其俯视图是( )ABCD3在RtABC中C90,A、B、C
2、的对边分别为a、b、c,c3a,tanA的值为()ABCD34若代数式在实数范围内有意义,则x的取值范围是( )ABCD5抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)6下列四个几何体中,左视图为圆的是()ABCD7在下列二次函数中,其图象的对称轴为的是ABCD8已知,则的值是A60B64C66D729如图,直线ABCD,则下列结论正确的是()A1=2B3=4C1+3=180D3+4=18010菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A3.5B4C7D14二、填空题(共7小题,每小题3分,满分21
3、分)11在中,:1:2:3,于点D,若,则_12一个多边形的内角和是,则它是_边形13一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_14甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)15已知一组数据,的平均数是,那么这组数据的方差等于_16已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为_.17如图,
4、平行于x轴的直线AC分别交抛物线(x0)与(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则=_三、解答题(共7小题,满分69分)18(10分)新农村社区改造中,有一部分楼盘要对外销售某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送请写出售价y(元/米2)与楼层x(1x23,x取整数)之间的函数表达式
5、;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算19(5分)先化简,再求值:,其中x=,y=20(8分)抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(0,3)求抛物线的解析式;如图1,抛物线顶点为E,EFx轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若MNC90,请指出实数m的变化范围,并说明理由如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2(k0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标21(10分)中华文明,源远流长;中华汉字,寓
6、意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50x60100.0560x70300.1570x8040n80x90m0.3590x100500.25根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?22(10分)某校在
7、一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图请结合统计图,回答下列问题:(1)本次调查学生共 人,a= ,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率23(12分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两
8、次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由24(14分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)
9、参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:将360000000用科学记数法表示为:3.61故选:B点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、A【解析】试题分析:从上面看是一行3个正方形故选A考点:三视图3、B【解析】根据勾股定理和三角函数即可解
10、答.【详解】解:已知在RtABC中C=90,A、B、C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=2x.即tanA=.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.4、D【解析】试题解析:要使分式有意义,则1-x0,解得:x1故选D5、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h6、A【解析】根据三视图的法则可得出答案
11、.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析 较容易题.失分原因是不会判断常见几何体的三视图.7、A【解析】y=(x+2)2的对称轴为x=2,A正确;y=2x22的对称轴为x=0,B错误;y=2x22的对称轴为x=0,C错误;y=2(x2)2的对称轴为x=2,D错误故选A18、A【解析】将代入原式,计算可得【详解】解:当时,原式,故选A【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式9、D【解析】分析:依据ABCD,可得3+5=180,
12、再根据5=4,即可得出3+4=180详解:如图,ABCD,3+5=180,又5=4,3+4=180,故选D点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补10、A【解析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB【详解】菱形ABCD的周长为28,AB=284=7,OB=ODH为AD边中点,OH是ABD的中位线,OHAB7=3.1故选A【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键二、
13、填空题(共7小题,每小题3分,满分21分)11、2.1【解析】先求出ABC是A等于30的直角三角形,再根据30角所对的直角边等于斜边的一半求解【详解】解:根据题意,设A、B、C为k、2k、3k,则k+2k+3k=180,解得k=30,2k=60,3k=90,AB=10,BC=AB=1,CDAB,BCD=A=30,BD=BC=2.1故答案为2.1【点睛】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30角所对的直角边等于斜边的一半、求出ABC是直角三角形是解本题的关键12、六【解析】试题分析:这个正多边形的边数是n,则(n2)180=720,解得:n=1则这个正多边形的边数是六
14、,故答案为六考点:多边形内角与外角13、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值【详解】解:根据题意得1%,解得n1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球故答案为1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率14、甲【解析】乙所得环数的平均数为:=5,S2=+=+=1
15、6.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.15、5.2【解析】分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案详解:平均数为6, (3+4+6+x+9)5=6, 解得:x=8,方差为:点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型明确计算公式是解决这个问题的关键16、-10【解析】根据根与系数的关系得出-2+4=-m,-24=n,求出即可【详解】关于x的一元二次方程的两个实数根分别为x =-2,x =4,2+4=m,24=n,解得:m=2,n=8,m+n=10,故答案为:-1
16、0【点睛】此题考查根与系数的关系,掌握运算法则是解题关键17、5- 【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解设点C的坐标为(1,),则点B的坐标为(,),点D的坐标为(1,1),点E的坐标为(,1),则AB=,DE=1,则=5考点:二次函数的性质三、解答题(共7小题,满分69分)18、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算【解析】解:(1)当1x8时,每平方米的售价应为:y=4000(8x)30=30x+3760 (元/平
17、方米)当9x23时,每平方米的售价应为:y=4000+(x8)50=50x+3600(元/平方米)(2)第十六层楼房的每平方米的价格为:5016+3600=4400(元/平方米),按照方案一所交房款为:W1=4400120(18%)a=485760a(元),按照方案二所交房款为:W2=4400120(110%)=475200(元),当W1W2时,即485760a475200,解得:0a10560,当W1W2时,即485760a475200,解得:a10560,当0a10560时,方案二合算;当a10560时,方案一合算【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出
18、各楼层的单价以及是交房款的关系式是解题的关键19、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原式=2+2=20、(1)yx22x3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,2)【解析】(1)把点A(1,0),C(0,3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CHEF于H,设N的坐标为(1,n),证明RtNCHMNF,可得mn2+3n+1,因为4n0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(x1,y1),设直线HQ
19、表达式为yax+t,用待定系数法和韦达定理可求得ax2x1,t2,即可得出直线QH过定点(0,2)【详解】解:(1)抛物线yx2+bx+c经过点A、C,把点A(1,0),C(0,3)代入,得:,解得,抛物线的解析式为yx22x3;(2)如图,作CHEF于H,yx22x3(x1)24,抛物线的顶点坐标E(1,4),设N的坐标为(1,n),4n0MNC90,CNH+MNF90,又CNH+NCH90,NCHMNF,又NHCMFN90,RtNCHMNF,即解得:mn2+3n+1,当时,m最小值为;当n4时,m有最大值,m的最大值1612+11m的取值范围是(3)设点P(x1,y1),Q(x2,y2),
20、过点P作x轴平行线交抛物线于点H,H(x1,y1),ykx+2,yx2,消去y得,x2kx20,x1+x2k,x1x22,设直线HQ表达式为yax+t,将点Q(x2,y2),H(x1,y1)代入,得,y2y1a(x1+x2),即k(x2x1)ka,ax2x1,( x2x1)x2+t,t2,直线HQ表达式为y( x2x1)x2,当k发生改变时,直线QH过定点,定点坐标为(0,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键21、(1)70,0.2;(2)补图见解析;(3
21、)80x90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可详解:(1)本次调查的总人数为100.05=200,则m=2000.35=70,n=40200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第1
22、00、101个数均落在80x90,这200名学生成绩的中位数会落在80x90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:30000.25=750(人)点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了中位数和利用样本估计总体22、(1)300,10; (2)有800人;(3) 【解析】试题分析:试题解析:(1)12040%=300,a%=140%30%20%=10%,a=10,10%300=30,图形如下:(2)200040%=800(人),答:估计该校选择“跑
23、步”这种活动的学生约有800人;(3)画树状图为:共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.23、(1)36(2)不公平【解析】(1)根据题意列表即可;(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论【详解】(1)列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1
24、,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,(2)这个游戏对他们不公平,理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,而P(两次掷的骰子的点数相同) P(两次掷的骰子的点数的和是6)= 不公平【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平24、()点P的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90,OB=1
25、,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=CPQ又OBP=C=90,OBPPCQ由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)