《浙江省绍兴市迪荡新区重点中学2022-2023学年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省绍兴市迪荡新区重点中学2022-2023学年中考试题猜想数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )ABCD2如图是一个由4个相同的正方体组成的立体图形,它的主视图是()ABCD3如图图形中,既是轴对称图形,又是中心对称图形的是()ABCD4已知下列命题:对顶角相等;若
2、ab0,则;对角线相等且互相垂直的四边形是正方形;抛物线y=x22x与坐标轴有3个不同交点;边长相等的多边形内角都相等从中任选一个命题是真命题的概率为()ABCD5若关于的一元二次方程有两个不相等的实数根,则的取值范围( )ABC且D6如图,ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A相切B相交C相离D无法确定7用配方法解下列方程时,配方有错误的是( )A化为B化为C化为D化为8如图,已知点A,B分别是反比例函数y=(x0),y=(x0)的图象上的点,且AOB=90,tanBAO=,则k的值为()A2B2C4D49如图:A、B
3、、C、D四点在一条直线上,若ABCD,下列各式表示线段AC错误的是( )AACADCDBACAB+BCCACBDABDACADAB10如果一个正多边形内角和等于1080,那么这个正多边形的每一个外角等于()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近其中2540000用科学记数法表示为_12在33方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_2x32y34y13已知a2+1=3a,则代数式a+的值为14在平面直角坐标系xOy中,若干个半径为1个单
4、位长度,圆心角是的扇形按图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是_,的坐标是_15抛物线y2x2+3x+k2经过点(1,0),那么k_16请从以下两个小题中任选一个作答,若多选,则按第一题计分A正多边形的一个外角是40,则这个正多边形的边数是_ .B运用科学计算器比较大小: _ sin37.5 .三、解答题(共8题,共72分)17(8分)如图,ABC中,点D在边AB上,满足ACD=ABC,若AC=,AD=1,求DB的长 18
5、(8分)如图,已知:ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE求证:MD=ME19(8分)已知OAB在平面直角坐标系中的位置如图所示请解答以下问题:按要求作图:先将ABO绕原点O逆时针旋转90得OA1B1,再以原点O为位似中心,将OA1B1在原点异侧按位似比2:1进行放大得到OA2B2;直接写出点A1的坐标,点A2的坐标20(8分)如图,在平面直角坐标系xOy中,函数的图象与直线y2x+1交于点A(1,m).(1)求k、m的值;(2)已知点P(n,0)(n1),过点P作平行于y轴的直线,交直线y2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫
6、做整点.当n3时,求线段AB上的整点个数;若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.21(8分)如图,小明的家在某住宅楼AB的最顶层(ABBC),他家的后面有一建筑物CD(CDAB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43,顶部D的仰角是25,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米)22(10分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分请根据图表信息回答下列问题:视力频数(人)频
7、率4.0x4.3200.14.3x4.6400.24.6x4.9700.354.9x5.2a0.35.2x5.510b(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a ,b ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?23(12分)如图,在平面直角坐标系中,直线y=x4与x轴、y轴分别交于A、B两点,抛物线y=x2bxc经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD轴于D,交AB于点E当点P运动到什么
8、位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由24某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:抛物线向右平移1个单位长度,平移后解析式为:,再向上平移1
9、个单位长度所得的抛物线解析式为:故选C考点:二次函数图象与几何变换2、D【解析】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.3、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故A不正确;B、既是轴对称图形,又是中心对称图形,故B正确;C、是轴对称图形,不
10、是中心对称图形,故C不正确;D、既不是轴对称图形,也不是中心对称图形,故D不正确.故选B.【点睛】本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.4、B【解析】对顶角相等,故此选项正确;若ab0,则,故此选项正确;对角线相等且互相垂直平分的四边形是正方形,故此选项错误;抛物线y=x22x与坐标轴有2个不同交点,故此选项错误;边长相等的多边形内角不一定都相等,故此选项错误;从中任选一个命题是真命题的概率为:故选:B5、C【解析】根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论【详解】解:关于x的一元二次方程有两个不相等的实数根
11、, ,解得:k1且k1故选:C【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键6、B【解析】首先过点A作AMBC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系【详解】解:过点A作AMBC于点M,交DE于点N,AMBC=ACAB,AM=2.1D、E分别是AC、AB的中点,DEBC,DE=BC=2.5,AN=MN=AM,MN=1.2以DE为直径的圆半径为1.25,r=1.251.2,以DE为直径的圆与BC的位置关系是:相交故选B【点睛】本题考查了直线和圆的位置关系
12、,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键7、B【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方【详解】解:、,故选项正确、,故选项错误、,故选项正确、,故选项正确故选:【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数8、D【解析】首先过点A作ACx轴于C,过点B作BDx轴于D,易得OBDAOC,又由点A,B分别在反比例函数y= (x0),y=(x0)的图象上,即可得SOBD= ,SAOC=|
13、k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作ACx轴于C,过点B作BDx轴于D,ACO=ODB=90,OBD+BOD=90,AOB=90,BOD+AOC=90,OBD=AOC,OBDAOC,又AOB=90,tanBAO= ,=, = ,即 ,解得k=4,又k0,k=-4,故选:D【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。9、C【解析】根据线段上的等量关系逐一判断即可.【详解】A、AD-CD=AC,此选项表示正确;B、AB+BC=AC,此选项表示正确;C、AB=CD
14、,BD-AB=BD-CD,此选项表示不正确;D、AB=CD,AD-AB=AD-CD=AC,此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.10、A【解析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360,即可求得答案【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,这个正多边形的每一个外角等于:3608=45故选A【点睛】此题考查了多边形的内角和与外角和的知识注意掌握多边形内角和定理:(n-2)180,外角和等于360二、填空题(本
15、大题共6个小题,每小题3分,共18分)11、2.541【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】2540000的小数点向左移动6位得到2.54,所以,2540000用科学记数法可表示为:2.541,故答案为2.541【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a| 【解析】(1)根据任意多边形外角和等于360可以得到正多边形的边数(2)用科学计算器计算即可比较大小.【详解】(1)正多边形的一个外角是40,任意多边形外角和等于360(2)利用科学计算器计算可知, sin37.5 .故
16、答案为(1). 9, (2). 【点睛】此题重点考察学生对正多边形外交和的理解,掌握正多边形外角和,会用科学计算器是解题的关键.三、解答题(共8题,共72分)17、BD= 2.【解析】试题分析:根据ACD=ABC,A是公共角,得出ACDABC,再利用相似三角形的性质得出AB的长,从而求出DB的长试题解析:ACD=ABC,又A=A,ABCACD ,AC=,AD=1,AB=3,BD= ABAD=31=2 .点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键18、证明见解析.【解析】试题分析:根据等腰三角形的性质可证DBM=ECM,可证BDMCEM,
17、可得MD=ME,即可解题试题解析:证明:ABC中,AB=AC,DBM=ECM.M是BC的中点,BM=CM.在BDM和CEM中,BDMCEM(SAS).MD=ME考点:1.等腰三角形的性质;2.全等三角形的判定与性质.19、 (1)见解析;(2)点A1的坐标为:(1,3),点A2的坐标为:(2,6)【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案【详解】(1)如图所示:OA1B1,OA2B2,即为所求;(2)点A1的坐标为:(1,3),点A2的坐标为:(2,6)【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键20、(1
18、)m3,k3;(2)线段AB上有(1,3)、(2,5)、(3,7)共3个整点,当2n3时,有五个整点.【解析】(1)将A点代入直线解析式可求m,再代入,可求k.(2)根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1x3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.根据图象可以直接判断2n3.【详解】(1)点A(1,m)在y2x+1上,m21+13.A(1,3).点A(1,3)在函数的图象上,k3.(2)当n3时,B、C两点的坐标为B(3,7)、C(3,1).整点在线段AB上1x3且x为整数x1,2,3当x1时,y3,当x2时,y5,当x3时,y7,线段AB上有(
19、1,3)、(2,5)、(3,7)共3个整点.由图象可得当2n3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.21、39米【解析】过点A作AECD,垂足为点E, 在RtADE中,利用三角函数求出的长,在RtACE中,求出的长即可得.【详解】解:过点A作AECD,垂足为点E, 由题意得,AE= BC=28,EAD25,EAC43,在RtADE中,在RtACE中, (米),答:建筑物CD的高度约为39米22、200名初中毕业生的视力情况 200 60 0.05 【解析】(1)根据视力在4.0x4.3范围内的频数除以频
20、率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【详解】(1)根据题意得:200.1=200,即本次调查的样本容量为200,故答案为200;(2)a=2000.3=60,b=10200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人23、(1)y=x22x1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在这样的直线l,使得MON为等腰三角形所求Q点的坐标为(
21、,2)或(,2)或(,2)或(,2)【解析】解:(1)直线y=x+1与x轴、y轴分别交于A、B两点,A(1,0),B(0,1)抛物线y=x2bxc经过A、B两点,解得抛物线解析式为y=x22x1令y=0,得x22x1=0,解得x1=1,x2=1,C(1,0)(2)如图1,设D(t,0)OA=OB,BAO=15E(t,t1),P(t,t22t1)PE=yPyE=t22t1t1=t21t=(t+2)2+1当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在如图2,过N点作NHx轴于点H设OH=m(m0),OA=OB,BAO=15NH=AH=1m,yQ=1m又M为OA中点,MH=2m当
22、MON为等腰三角形时:若MN=ON,则H为底边OM的中点,m=1,yQ=1m=2由xQ22xQ1=2,解得点Q坐标为(,2)或(,2)若MN=OM=2,则在RtMNH中,根据勾股定理得:MN2=NH2MH2,即22=(1m)2(2m)2,化简得m26m8=0,解得:m1=2,m2=1(不合题意,舍去)yQ=2,由xQ22xQ1=2,解得点Q坐标为(,2)或(,2)若ON=OM=2,则在RtNOH中,根据勾股定理得:ON2=NH2OH2,即22=(1m)2m2,化简得m21m6=0,=80,此时不存在这样的直线l,使得MON为等腰三角形综上所述,存在这样的直线l,使得MON为等腰三角形所求Q点的
23、坐标为(,2)或(,2)或(,2)或(,2)(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标(2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值(2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标 “MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解24、(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆比计划多了1辆. 【解析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4(5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆. (2)206+3+(2)+(1)+(+4)+(+2)+(5)=120+(+1)=121(辆),因为121120 121-120=1(辆)答:半年内总生产量是121辆比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则