《河南省濮阳市濮阳县重点中学2023年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河南省濮阳市濮阳县重点中学2023年中考联考数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=22019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别
2、是()A32,31B31,32C31,31D32,353如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,则 的度数是 ABCD4cos45的值是()ABCD15解分式方程 ,分以下四步,其中,错误的一步是()A方程两边分式的最简公分母是(x1)(x+1)B方程两边都乘以(x1)(x+1),得整式方程2(x1)+3(x+1)6C解这个整式方程,得x1D原方程的解为x16如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1
3、的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)7如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A(1,1)B(2,1)C(2,2)D(3,1)8下列实数中,有理数是()ABCD9如图,在中,点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结给出以下四个结论:;点是的中点;,其中正确的个数是( )A4B3C2D110如图,
4、将木条a,b与c钉在一起,1=70,2=50,要使木条a与b平行,木条a旋转的度数至少是()A10B20C50D70二、填空题(共7小题,每小题3分,满分21分)11如图,在边长为1正方形ABCD中,点P是边AD上的动点,将PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ则当BQ+DQ的值最小时,tanABP_12不等式组的解集是_13在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的
5、方程为_14计算:-=_.15一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为_16如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则APB=_ .17已知一组数据:3,3,4,5,5,则它的方差为_三、解答题(共7小题,满分69分)18(10分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用
6、你的建议后小申家一个月(按30天计算)的节约用水量19(5分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?20(8分)如图,交于点求的值21(10分)如图,已知是的外接圆,圆心在的外部,求的半径.22(10分)如图,在ABC中,AB=AC,BAC=120,EF为AB的垂直平分线,交BC于点F,交AB于点E求证:FC=2BF23(12分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根
7、据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)24(14分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射
8、处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元,a_,b_;(2)若m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分
9、)1、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-42m=9-8m=0,解得:m=故选C2、C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数所以本题这组数据的中位数是1,众数是1故选C3、A【解析】分析:首先求出AEB,再利用三角形内角和定理求出B,最后利用平行四边形的性质得D=B即可解决问题详解:四边形ABCD是正方形,AEF=90,
10、CEF=15,AEB=180-90-15=75,B=180-BAE-AEB=180-40-75=65,四边形ABCD是平行四边形,D=B=65故选A点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型4、C【解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45= .故选:C.【点睛】本题考查特殊角的三角函数值.5、D【解析】先去分母解方程,再检验即可得出.【详解】方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程
11、无解【点睛】本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验6、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,1),记P1(a1,b1),其中a1=1,b1=1根据对称关系,依次可以求得:P3(4a1,1b1),P4(1+a1,4+b1),P5(a1,1b1),P6(4
12、+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(41+a1,b1),1010=4501+1,点P1010的坐标是(1010,1),故选:B点睛:本题考查了对称的性质,坐标与图形的变化-旋转,根据条件求出前边几个点的坐标,得到规律是解题关键7、B【解析】直接利用已知点坐标建立平面直角坐标系进而得出答案【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:棋子“炮”的坐标为(2,1),故答案为:B【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键8、B【解析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式
13、下不能开方的,等,很容易选择【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、为无理数,故本选项错误;D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案9、C【解析】用特殊值法,设出等腰直角三角形直角边的长,证明CDBBDE,求出相关线段的长;易证GABDBC,求出相关线段的长;再证AGBC,求出相关线段的长,最后求出ABC和BDF的面积,即可作出选择【详解】解:由题意知,ABC是等腰直角三角形,设ABBC2,则A
14、C2,点D是AB的中点,ADBD1,在RtDBC中,DC,(勾股定理)BGCD,DEBABC90,又CDBBDE,CDBBDE,DBEDCB, ,即DE ,BE,在GAB和DBC中,GABDBC(ASA)AGDB1,BGCD,GAB+ABC180,AGBC,AGFCBF,且有ABBC,故正确,GB,AC2,AF,故正确,GF,FEBGGFBE,故错误,SABCABAC2,SBDFBFDE,故正确故选B【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键10、B【解析】要使木条a与b平行,那么1=2,从而可求出木
15、条a至少旋转的度数.【详解】解:要使木条a与b平行,1=2,当1需变为50 , 木条a至少旋转:70-50=20.故选B.【点睛】本题考查了旋转的性质及平行线的性质:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补;夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQx解直角三角形得到AP1,根据三角函数的定义即可得到结论【详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,P
16、QxPDQ45,PDPQ,即1x,x1,AP1,tanABP1,故答案为:1【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称最短路线问题,正确的理解题意是解题的关键12、x1【解析】分析:分别求出两个不等式的解,从而得出不等式组的解集详解:解不等式可得:x1, 解不等式可得:x3, 不等式组的解为x1点睛:本题主要考查的是不等式组的解集,属于基础题型理解不等式的性质是解决这个问题的关键13、【解析】设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程【详解】设羊价为x钱,根据题意可得方程:,故答案为:【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意
17、,列出相应的方程14、2【解析】试题解析:原式 故答案为15、【解析】首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=4;当a=4时,把(4,0)代入y=kx+3,得k=;当a=-4时,把(-4,0)代入y=kx+3,得k=;故k的值为或【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本
18、题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值16、【解析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解APB【详解】把PAB绕B点顺时针旋转90,得PBC,则PABPBC,设PA=x,PB=2x,PC=3x,连PP,得等腰直角PBP,PP2=(2x)2+(2x)2=8x2,PPB=45又PC2=PP2+PC2,得PPC=90故APB=CPB=45+90=135故答案为135【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把PAB顺时针旋转90使得A与C点
19、重合是解题的关键17、 【解析】根据题意先求出这组数据的平均数是:(3+3+4+5+5)5=4,再根据方差公式求出这组数据的方差为:(34)2+(34)2+(44)2+(54)2+(54)2=故答案为三、解答题(共7小题,满分69分)18、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升【解析】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所试题解析:解:(1)这7天内
20、小申家每天用水量的平均数为(815+780+800+785+790+825+805)7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,用水量的中位数为800升;(2)100%=12.5%答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水10030=3000升19、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的
21、年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键20、【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由A=ACD,AOB=COD可证ABOCDO,从而;再在RtABC和RtBCD中分别求出AB和CD的长,代入即可.解:ABC=BCD=90,ABCD,A=ACD,ABOCDO,在RtABC中,ABC
22、=90,A=45,BC=1,AB=1在RtBCD中,BCD =90,D=30,BC=1,CD=,21、4【解析】已知ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在RtOBH中,用半径表示出OH的长,即可用勾股定理求得半径的长【详解】作于点,则直线为的中垂线,直线过点,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.22、见解析【解析】连接AF,结合条件可得到B=C=30,AFC=60,再利用含30直角三角形的性质可得到AF=BF=CF,可证得结论【详解】证明:连接AF,EF为AB的垂直平分线,AF=BF,又AB=AC,BAC=120,B=C=
23、BAF=30,FAC=90,AF=FC,FC=2BF【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键23、(4)A高中观点4 446;(4)456人;(4)【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业
24、”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%460=446;(4)80044%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50(4-60%-44%)=508%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计总体;4扇形统计图24、 (1)
25、0,360,101;(2)当距离为2公里时,配套工程费用最少;(3)0m1【解析】(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,即可求解;(2)根据题目:配套工程费w防辐射费+修路费分0x3和x3时讨论.当0x3时,配套工程费W90x2360x+101,当x3时,W90x2,分别求最小值即可;(3)0x3,Wmx2360x+101,(m0),其对称轴x,然后讨论:x=3时和x3时两种情况m取值即可求解【详解】解:(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,解得:a360,b101,故答案为0,360,101;(2)当0x3时,配套工程费W90x2360x+101,当x2时,Wmin720;当x3时,W90x2,W随x最大而最大,当x3时,Wmin810720,当距离为2公里时,配套工程费用最少;(3)0x3,Wmx2360x+101,(m0),其对称轴x,当x3时,即:m60,Wminm()2360()+101,Wmin675,解得:60m1;当x3时,即m60,当x3时,Wmin9m675,解得:0m60,故:0m1【点睛】本题考查了二次函数的性质在实际生活中的应用最值问题常利函数的增减性来解答