《江苏省泰州市海陵区重点名校2023年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市海陵区重点名校2023年中考一模数学试题含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)12的绝对值是( )A2BCD2已知x2-2x-3=0,则2x2-4x的值为( )A-6B6C-2或6D-2或303下列四个式子中,正确的是()A =9B =6C()2=5D=44抢微信红包成为节日期间人们最喜欢的活动之一对某单位50
2、名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,305cos45的值是()ABCD16下列计算正确的是()A5x2x=3xB(a+3)2=a2+9C(a3)2=a5Da2pap=a3p7如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )A;B;C;D8义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1那么成绩较为整齐的是()A甲班B乙班C两班一样D无法确定9下列式子中,与互为有理化因式的是()AB
3、CD10一元二次方程x2-2x=0的解是( )Ax1=0,x2=2Bx1=1,x2=2Cx1=0,x2=-2Dx1=1,x2=-2二、填空题(共7小题,每小题3分,满分21分)11如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm12方程组的解是_13已知扇形AOB的半径OA=4,圆心角为90,则扇形AOB的面积为_.14若a3有平方根,则实数a的取值范围是_15若一次函数y=x+b(b为常数)的图象经过点(1,2),则b的值为_16如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PEBC
4、交AB于E,PFCD交AD于F,则阴影部分的面积是_17一只蚂蚁从数轴上一点 A出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_三、解答题(共7小题,满分69分)18(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数
5、19(5分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率20(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N(1)求反比例函数的解析式;(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标21(10分)如图,反比例
6、y=的图象与一次函数y=kx3的图象在第一象限内交于A(4,a)(1)求一次函数的解析式;(2)若直线x=n(0n4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若ABC是等腰直角三角形,求n的值22(10分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?23(12分)如图,已知点A,B,C在半径为4的O上,过点C作O的切线交OA的延长线
7、于点D()若ABC=29,求D的大小;()若D=30,BAO=15,作CEAB于点E,求:BE的长;四边形ABCD的面积24(14分)声音在空气中传播的速度y(m/s)是气温x()的一次函数,下表列出了一组不同气温的音速:气温x()05101520音速y(m/s)331334337340343(1)求y与x之间的函数关系式:(2)气温x=23时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2到原点的距离是2,所以2的绝对
8、值是2,故选A2、B【解析】方程两边同时乘以2,再化出2x2-4x求值解:x2-2x-3=02(x2-2x-3)=02(x2-2x)-6=02x2-4x=6故选B3、D【解析】A、表示81的算术平方根;B、先算-6的平方,然后再求的值;C、利用完全平方公式计算即可;D、=【详解】A、9,故A错误;B、-=-6,故B错误;C、()2=2+2+3=5+2,故C错误;D、=4,故D正确故选D【点睛】本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键4、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中
9、间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握5、C【解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45= .故选:C.【点睛】本题考查特殊角的三角函数值.6、D【解析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案【详解】解:A5x2x=7x,故此选项错误;B(a+3)2=a2+6a+9,故此选项错误;C(a3)2=a6,故此选项错误;Da2pap=a3p,正确故选
10、D【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键7、A【解析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案详解:关于x的方程x1+1x+c=0没有实数根,0,即114c0,解得:c1,c在1、1、0、3中取值是1故选A点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键8、B【解析】根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论【详解】S甲2S乙2,成绩较为稳定的是乙班。故选:B.【点睛】本题考查了方差,解题的关键是掌握方差的概念进行解答.9、B【解析】直接利用
11、有理化因式的定义分析得出答案【详解】()(,)=122,=10,与互为有理化因式的是:,故选B【点睛】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.10、A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1故选A考点:解一元二次方程-因式分解法二、填空题(共7小题,每小题3分,满分21分)11、4【解析】已知弧长即已知围成的圆锥的底面半径的长是6cm,这样就求出底面圆的半径扇形的半径为5cm就是圆锥的母
12、线长是5cm就可以根据勾股定理求出圆锥的高【详解】设底面圆的半径是r,则2r=6,r=3cm,圆锥的高=4cm故答案为4.12、【解析】利用加减消元法进行消元求解即可【详解】解:由+,得3x=6x=2把x=2代入,得2+3y=5y=1所以原方程组的解为: 故答案为:【点睛】本题考查了二元一次方程组的解法,用适当的方法解二元一次方程组是解题的关键.13、4【解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4.14、a1【解析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得 解得: 故答案为【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方
13、根.15、3【解析】把点(1,2)代入解析式解答即可【详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答16、【解析】根据题意可得阴影部分的面积等于ABC的面积,因为ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积【详解】设AP,EF交于O点,四边形ABCD为菱形,BCAD,ABCD.PEBC,PFCD,PEAF,PFAE.四边形AEFP是平行四边形SPOF=SAOE.即阴影部分的面积等于ABC的面积ABC的面积等于菱形ABCD的面积的一半,菱形
14、ABCD的面积=ACBD=5,图中阴影部分的面积为52=17、6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为6,当往左移动时,此时点A 表示的点为8.三、解答题(共7小题,满分69分)18、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);扇形统计图中“基本了解
15、”部分所对应扇形的圆心角为:360=90;故答案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.19、【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=点睛:本题主要考查了用列表法或画树状图法求概率列表法或
16、画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比20、(1);(2)点P的坐标是(0,4)或(0,4).【解析】(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)B(4,2),四边形OABC是矩形,OA=BC=2.将y=2代入3得:x=2,M(2,2).把M的坐标代入得:k=4,反比例函数的解析式是;(2).OPM的面积与四边形BMON的面积相等,.AM=2,O
17、P=4.点P的坐标是(0,4)或(0,4).21、(1)y=x3(2)1【解析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,),(n,n-3)设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么OED=45根据平行线的性质得到BCA=OED=45,所以当ABC是等腰直角三角形时只有AB=AC一种情况过点A作AFBC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可【详解】解:(1)反比例y=的图象过点A(4,a),a=1,A(4,1
18、),把A(4,1)代入一次函数y=kx3,得4k3=1,k=1,一次函数的解析式为y=x3;(2)由题意可知,点B、C的坐标分别为(n,),(n,n3)设直线y=x3与x轴、y轴分别交于点D、E,如图,当x=0时,y=3;当y=0时,x=3,OD=OE,OED=45直线x=n平行于y轴,BCA=OED=45,ABC是等腰直角三角形,且0n4,只有AB=AC一种情况,过点A作AFBC于F,则BF=FC,F(n,1),1=1(n3),解得n1=1,n2=4,0n4,n2=4舍去,n的值是1【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中
19、22、(1)A种奖品每件16元,B种奖品每件4元(2)A种奖品最多购买41件【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100a)件,根据总价=单价购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论【详解】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,
20、则B种奖品购买(100a)件,根据题意得:16a+4(100a)900,解得:a,a为整数,a41,答:A种奖品最多购买41件【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.23、(1)D=32;(2)BE;【解析】()连接OC, CD为切线,根据切线的性质可得OCD=90,根据圆周角定理可得AOC=2ABC=292=58,根据直角三角形的性质可得D的大小.()根据D=30,得到DOC=60,根据BAO=15,可以得出AOB=150,进而证明OBC为等腰直角三角形,根据等腰直角三角形的
21、性质得出根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;根据四边形ABCD的面积=SOBC+SOCDSOAB进行计算即可.【详解】()连接OC,CD为切线,OCCD,OCD=90,AOC=2ABC=292=58,D=9058=32;()连接OB,在RtOCD中,D=30,DOC=60, BAO=15,OBA=15,AOB=150,OBC=15060=90,OBC为等腰直角三角形, 在RtCBE中, 作BHOA于H,如图,BOH=180AOB=30, 四边形ABCD的面积=SOBC+SOCDSOAB 【点睛】考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中24、 (1) y=x+331;(2)1724m.【解析】(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b, k=,y=x+331.(2)当x=23时,y= x23+331=344.85344.8=1724.此人与烟花燃放地相距约1724m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.