江苏省江阴市青阳片达标名校2023届初中数学毕业考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:88306737 上传时间:2023-04-25 格式:DOC 页数:18 大小:925.50KB
返回 下载 相关 举报
江苏省江阴市青阳片达标名校2023届初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共18页
江苏省江阴市青阳片达标名校2023届初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省江阴市青阳片达标名校2023届初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省江阴市青阳片达标名校2023届初中数学毕业考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()ABCD2关于x的方程x2+(k24)x+k+1=0的两个根互为相反数,则k值是()A1B2C2D23已知一元二次方程有一个根为2,则另一根为A2B3C4D8

2、4某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是( )A20,19B19,19C19,20.5D19,205若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )A1,2,3B1,2C1,3D2,36下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab22ab=3b7如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A2cmB4cmC6cmD8cm8下列图形中,既是中心对称图形又是轴对称图形的是 ( )ABCD9若x

3、,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()ABCD10如图是二次函数yax2bxc的图象,其对称轴为x1,下列结论:abc0;2ab0;4a2bc0;若(,y1),(,y2)是抛物线上两点,则y1y2,其中结论正确的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,矩形ABCD中,如果以AB为直径的O沿着滚动一周,点恰好与点C重合,那么 的值等于_(结果保留两位小数)12如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90至AB,点M是线段AB的中点,若反比例函数y=(k0)的图象恰好经过点B、M,则k=_1

4、3已知a1,a2,a3,a4,a5,则an_(n为正整数)14如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ给出如下结论:DQ1;SPDQ;cosADQ=其中正确结论是_(填写序号)15分解因式:8x-8xy+2y= _ .16已知x+y8,xy2,则x2y+xy2_三、解答题(共8题,共72分)17(8分)一次函数的图象经过点和点,求一次函数的解析式18(8分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90,ADC=60,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形

5、ABCD 中,BAD=BCD=90,ABC=135,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 19(8分)有4张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n(1)请用列表或树状图的方式把(m,n)所有的结果表示出来(2)求选出的(m,n)在二、四象限的概率20(8分)如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,4)请在图中,画出ABC向左平移6个单

6、位长度后得到的A1B1C1; 以点O为位似中心,将ABC缩小为原来的,得到A2B2C2,请在图中y轴右侧,画出A2B2C2,并求出A2C2B2的正弦值21(8分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值22(

7、10分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.23(12分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学

8、校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)24如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.

9、2、D【解析】根据一元二次方程根与系数的关系列出方程求解即可【详解】设方程的两根分别为x1,x1,x1+(k1-4)x+k-1=0的两实数根互为相反数,x1+x1,=-(k1-4)=0,解得k=1,当k=1,方程变为:x1+1=0,=-40,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,=110,方程有两个不相等的实数根;k=-1故选D【点睛】本题考查的是根与系数的关系x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1= ,x1x1= ,反过来也成立.3、C【解析】试题分析:利用根与系数的关系来求方程的另一根设方程的另一根为,则+2=6, 解得=1考

10、点:根与系数的关系4、D【解析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1故选D【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数也考查了中位数的定义5、C【解析】试题分析:解分式方程得:等式的两边都乘以(x2),得x=2(x2)+m,解得x=4m,且x=4m2,已知关于x的分式方的解为正数,得m=1,m=3,故选C考点:分式方程的解6、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;

11、C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键7、B【解析】首先连接OC,AO,由切线的性质,可得OCAB,根据已知条件可得:OA=2OC,进而求出AOC的度数,则圆心角AOB可求,根据弧长公式即可求出劣弧AB的长【详解】解:如图,连接OC,AO,大圆的一条弦AB与小圆相切,OCAB,OA=6,OC=3,OA=2OC,A=30,AOC=60,AOB=120,劣弧AB的长= =4,故选B【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键8、C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,

12、故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.9、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心10、C【解析】试题分析:根据题意可得:a0,b0,c0,则abc0,则错误;根据对称

13、轴为x=1可得:=1,则-b=2a,即2a+b=0,则正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向

14、上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.二、填空题(本大题共6个小题,每小题3分,共18分)11、3.1【解析】分析:由题意可知:BC的长就是O的周长,列式即可得出结论详解:以AB为直径的O沿着滚动一周,点恰好与点C重合,BC的长就是O的周长,AB=BC,=3.1故答案为3.1点睛:本题考查了圆的周长以及线段的比解题的关键是弄懂BC的长就是O的周长12、12【解析】根据题意可以求得点B的横坐标,然后根据反比例函数y=(k0)的图象恰好经过点B、M,从而可以求得k的值【详解】解:作BCy轴于点C,如图所示,BAB=90,AOB=90,AB=AB,BAO+

15、ABO=90,BAO+BAC=90,ABO=BAC,ABOBAC,AO=BC,点A(0,6),BC=6,设点B的坐标为(6,),点M是线段AB的中点,点A(0,6),点M的坐标为(3,),反比例函数y=(k0)的图象恰好经过点M,解得,k=12,故答案为:12.【点睛】本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答13、.【解析】观察分母的变化为n的1次幂加1、2次幂加1、3次幂加1,n次幂加1;分子的变化为:3、5、7、92n+1【详解】解:a1=,a2=,a3=,a4=,a5=,an,故答案为:【点睛】本题考查学生通过观察、归纳、抽象出数

16、列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案14、【解析】连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQ=OB,可证到AOD=QOD,从而证到AODQOD,则有DQ=DA=1;连接AQ,如图4,根据勾股定理可求出BP易证RtAQBRtBCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;过点Q作QHDC于H,如图4易证PHQPCB,运用相似三角形的性质可求出QH,从而可求出SDPQ的值;过点Q作QNAD于N,如图3易得DPNQAB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在RtDNQ中运用三角函

17、数的定义,就可求出cosADQ的值【详解】解:连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQ=OB,可证到AOD=QOD,从而证到AODQOD,则有DQ=DA=1故正确;连接AQ,如图4则有CP=,BP=易证RtAQBRtBCP,运用相似三角形的性质可求得BQ=,则PQ=,故正确;过点Q作QHDC于H,如图4易证PHQPCB,运用相似三角形的性质可求得QH=,SDPQ=DPQH=故错误;过点Q作QNAD于N,如图3易得DPNQAB,根据平行线分线段成比例可得,则有,解得:DN=由DQ=1,得cosADQ=故正确综上所述:正确结论是故答案为:【点睛】本题主要考查了

18、圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用15、1【解析】提取公因式1,再对余下的多项式利用完全平方公式继续分解完全平方公式:a11ab+b1=(ab)1【详解】8x1-8xy+1y=1(4x1-4xy+y)=1(1x-y)1故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解16、1【解析】将所求式

19、子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值【详解】x+y=8,xy=2,x2y+xy2=xy(x+y)=28=1故答案为:1【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式三、解答题(共8题,共72分)17、y=2x+1【解析】直接把点A(1,1),B(1,5)代入一次函数y=kx+b(k0),求出k、b的值即可【详解】一次函数y=kx+b(k0)的图象经过点A(1,1)和点B(1,5),解得:故一次函数的解析式为y=2x+1【点睛】本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键18、(1)3 ,

20、(2)见解析【解析】(1)易证ABDCBD,再利用含30的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,AEF即为所求.【详解】(1)AB=BC,AD=CD=3, BAD=BCD=90,ABDCBD(HL)ADB=CDB=ADC=30,AB=SABD=四边形ABCD的面积为2SABD=(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,BEF的周长为BE+EF+BF=BE+EF+BF=BB为最短.故此时BEF的周长最小.【点睛】此题主要考查含30的直角三角形与对称性的应用,

21、解题的关键是根据题意作出相应的图形进行求解.19、(1)详见解析;(2)P= 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析: (1)画树状图得:则(m,n)共有12种等可能的结果:(2,-1),(2,3),(2, 4),(-1,2),(-1,3),(1, 4),(3,2),(3,-1),(3, 4),(4,2),(4,-1),(4,3).(2)(m,n)在二、四象限的(2,-1),(2,3),(-1,2),(3,2),(3, 4),(4,2),(4,-1),(4,3),所选出的m,n在第二、三四象限的概率为:P=点睛:(1)利用频率估算法:大量重

22、复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.20、(1)见解析(2)【解析】试题分析:

23、(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案试题解析:(1)如图所示:A1B1C1,即为所求;(2)如图所示:A2B2C2,即为所求,由图形可知,A2C2B2=ACB,过点A作ADBC交BC的延长线于点D,由A(2,2),C(4,4),B(4,0),易得D(4,2),故AD=2,CD=6,AC=,sinACB=,即sinA2C2B2=考点:作图位似变换;作图平移变换;解直角三角形21、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大

24、值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N

25、的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,P

26、A2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛

27、】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.22、(1)直线的解析式为:.(2)平移的时间为5秒.【解析】(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式(2)设O2平移t秒后到O3处与O1第一次外切于点P,O3与x轴相切于D1点,连接O1O3,O3D1在直角O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间【详解】(1)由题意得,点坐标为.在中,点的坐标为.设直线的解析式为,由过、两点,得,解得,直线的解析式为:.(2)如图,设平移秒后到处与第一次外切于点,与轴相切

28、于点,连接,.则,轴,在中,.,(秒),平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的23、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2

29、)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100500.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50500.9-300)=3900元,单独在B超市购买:100500.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45500.9-300=1725元,两次购买,每次各买45个,需要17252=3450元,其余10个在B超市购买,需要10500.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次

30、购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁