江苏省无锡市江阴市2022-2023学年高三二诊模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:88306715 上传时间:2023-04-25 格式:DOC 页数:20 大小:2.04MB
返回 下载 相关 举报
江苏省无锡市江阴市2022-2023学年高三二诊模拟考试数学试卷含解析.doc_第1页
第1页 / 共20页
江苏省无锡市江阴市2022-2023学年高三二诊模拟考试数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江苏省无锡市江阴市2022-2023学年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省无锡市江阴市2022-2023学年高三二诊模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则集合的非空子集个数是( )A2B3C7D82在三棱锥中,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥

2、的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD3已知等差数列的前项和为,若,则数列的公差为( )ABCD4如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()ABCD5已知l,m是两条不同的直线,m平面,则“”是“lm”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件6已知函数,存在实数,使得,则的最大值为( )ABCD7点为不等式组所表示的平面区域上的动点,则的取值范围是( )ABCD8已知复数,满足,则( )A1BCD59已知下列命题:“”的否定是“”;已知为两个命题,若“”

3、为假命题,则“”为真命题;“”是“”的充分不必要条件;“若,则且”的逆否命题为真命题.其中真命题的序号为( )ABCD10已知函数,若,,则a,b,c的大小关系是( )ABCD11已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()ABCD12等比数列若则( )A6B6C-6D二、填空题:本题共4小题,每小题5分,共20分。13已知函数的图象在点处的切线方程是,则的值等于_.14已知均为非负实数,且,则的取值范围为_15在边长为的菱形中,点在菱形所在的平面内若,则_16已知,则_。三、解答题:共70分。解答应写出文字说明、证明过程或演

4、算步骤。17(12分)如图,在斜三棱柱中,平面平面,均为正三角形,E为AB的中点()证明:平面;()求斜三棱柱截去三棱锥后剩余部分的体积18(12分)如图,在四棱锥中,底面是菱形,是边长为2的正三角形,为线段的中点(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积19(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,为的中点.(1)求证:平面;(2)求二面角的大小.20(12分)已知函数(为常数)()当时,求的单调区间;()若为增函数,求实数的取值范围.21(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的

5、距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?22(10分)如图,四棱锥VABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO平面ABCD,E

6、是棱VC的中点(1)求证:VA平面BDE;(2)求证:平面VAC平面BDE参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先确定集合中元素,可得非空子集个数【详解】由题意,共3个元素,其子集个数为,非空子集有7个故选:C【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个2、A【解析】设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以

7、.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题3、D【解析】根据等差数列公式直接计算得到答案.【详解】依题意,故,故,故,故选:D【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.4、A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应

8、用,对空间想象能力要求较高,属于中档题.5、A【解析】根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m平面时,若l”则“lm”成立,即充分性成立,若lm,则l或l,即必要性不成立,则“l”是“lm”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题6、A【解析】画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,在,故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较

9、难题.7、B【解析】作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论【详解】不等式组作出可行域如图:,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,故选:【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键8、A【解析】首先根据复数代数形式的除法运算求出,求出的模即可【详解】解:,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题9、B【解析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断【详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“

10、”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础10、D【解析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题11、C【解析】设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论【详解】设分别是的中点平面 是等边

11、三角形 又平面 为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为 球的半径平面 本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题12、B【解析】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数的几何意义即可解决.【详解】由已知,

12、故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.14、【解析】设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.【详解】因为,,令,则 ,因为,当且仅当时等号成立,所以 ,即,令则函数的对称轴为,所以当时函数有最大值为,即当且,即,或,时取等号;因为,当且仅当时等号成立,所以,令,则函数的对称轴为,所以当时,函数有最小值为,即,当,且时取等号,所以.故答案为:【点睛】本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求

13、解本题的关键;属于综合型、难度大型试题.15、【解析】以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.【详解】解:连接设交于点以点为原点,分别以直线为轴,建立如图所示的平面直角坐标系,则:设 得,解得,或,显然得出的是定值,取则,故答案为:【点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.16、【解析】由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()见解析;()【解析】()要证明线面平行,需先

14、证明线线平行,所以连接,交于点M,连接ME,证明;()由题意可知点到平面ABC的距离等于点到平面ABC的距离,根据体积公式剩余部分的体积是.【详解】()如图,连接,交于点M,连接ME,则因为平面,平面,所以平面()因为平面ABC,所以点到平面ABC的距离等于点到平面ABC的距离如图,设O是AC的中点,连接,OB因为为正三角形,所以,又平面平面,平面平面,所以平面ABC所以点到平面ABC的距离,故三棱锥的体积为而斜三棱柱的体积为所以剩余部分的体积为【点睛】本题考查证明线面平行,计算体积,意在考查推理证明,空间想象能力,计算能力,属于中档题型,一般证明线面平行的方法1.证明线线平行,则线面平行,2

15、.证明面面平行,则线面平行,关键是证明线线平行,一般构造平行四边形,则对边平行,或是构造三角形中位线.18、(1)见解析; (2).【解析】(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原点,建立如图所示空间直角坐标系,设,求解面的法向量,面的法向量,利用二面角的余弦值为,可求解,转化即得解.【详解】(1)证明:因为是正三角形,为线段的中点,所以因为是菱形,所以因为,所以是正三角形,所以,所以平面又,所以平面因为平面,所以平面平面(2)由(1)知平面,所以,而,所以,又,所以平面以为坐标原点,建立如图所示空间直角坐标系则于是,设面的一个法向量,由得令,则,即设,易得,设面的一个法

16、向量,由得令,则,即依题意,即,令,则,即,即所以【点睛】本题考查了空间向量和立体几何综合,考查了面面垂直的判断,二面角的向量求解,三棱锥的体积等知识点,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.19、(1)证明见解析(2)【解析】(1)连接,交与,连接,由,得出结论;(2)以为原点,分别为,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.【详解】(1)连接,交与,连接,在中,又平面,平面,所以平面;(2)由平面平面,为平面与平面的交线,故平面,故,又,所以平面,以为原点,分别为,轴建立空间直角坐标系,设平面的法向量为,由,得,平面的法向量为,由,故二面角的大小为

17、.【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、()单调递增区间为,;单调递减区间为;().【解析】()对函数进行求导,利用导数判断函数的单调性即可;()对函数进行求导,由题意知,为增函数等价于在区间恒成立,利用分离参数法和基本不等式求最值即可求出实数的取值范围.【详解】()由题意知,函数的定义域为,当时,令,得,或,所以,随的变化情况如下表:递增递减递增的单调递增区间为,单调递减区间为.()由题意得在区间恒成立,即在区间恒成立.,当且仅当,即时等号成立.所以,所以的取值范围是.【点睛】本题考查利用导数求函数的单调区间、利用分离参数法

18、和基本不等式求最值求参数的取值范围;考查运算求解能力和逻辑推理能力;利用导数把函数单调性问题转化为不等式恒成立问题是求解本题的关键;属于中档题、常考题型.21、(1)6种;(2);(3).【解析】(1)从4条街中选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【详解】(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条. (2)小明途中恰好经过处,共有4条路线:当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的概率;当走时,全程不等红绿灯的

19、概率;当走时,全程不等红绿灯的概率.所以途中恰好经过处,且全程不等信号灯的概率.(3)设以下第条的路线等信号灯的次数为变量,则第一条:,则;第二条:,则;另外四条路线:;,则综上,小明上学的最佳路线为;应尽量避开.【点睛】本题考查概率在实际生活中的综合应用问题,考查学生逻辑推理与运算能力,是一道有一定难度的题.22、(1)见解析(2)见解析【解析】(1)连结OE,证明VAOE得到答案.(2)证明VOBD,BDAC,得到BD平面VAC,得到证明.【详解】(1)连结OE因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VAOE,又因为OE平面BDE,VA平面BDE,所以VA平面BDE;(2)因为VO平面ABCD,又BD平面ABCD,所以VOBD,因为底面ABCD是菱形,所以BDAC,又VOACO,VO,AC平面VAC,所以BD平面VAC又因为BD平面BDE,所以平面VAC平面BDE【点睛】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁