《河北省保定市高阳县市级名校2023届中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省保定市高阳县市级名校2023届中考一模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )ABCD2下列图案中,是轴对称图形但不是中心对称图形的是()ABCD3函数y=ax2+1与(a0)在同一平面直角坐标系中的图象可能是( )ABCD4关于x的不等式组无解,那么m的取值范围为( )Am1Bm1C1m0D1m0
2、5用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()ABCD6如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点设AC2,BD1,APx,AMN的面积为y,则y关于x的函数图象大致形状是( )ABCD7下列运算正确的是()Aa3a=2aB(ab2)0=ab2C=D=98如图,在O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A5B6C7D89下列各式中计算正确的是ABCD10正比例函数y2kx的图象如图所示,则y(k2)x1k的图象大致是()ABCD二、填空题(共7小题,
3、每小题3分,满分21分)11已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为_12若一个棱柱有7个面,则它是_棱柱13甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)14数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计)若要求折出的盒子体积最大,则正方体的棱长等于_15如图,在梯形ABCD中,ABCD,C=90,BC=CD=4,AD=2 ,若,用、表示=_16如图,在ABCD中,AC与BD
4、交于点M,点F在AD上,AF6cm,BF12cm,FBMCBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动点P运动到F点时停止运动,点Q也同时停止运动当点P运动_秒时,以点P、Q、E、F为顶点的四边形是平行四边形17估计无理数在连续整数_与_之间三、解答题(共7小题,满分69分)18(10分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m)与时间(天)的关系如图中线段
5、l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量(2)求当0x60时,水库的总蓄水量y万(万m)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m为严重干旱,直接写出发生严重干旱时x的范围19(5分)如图,已知是直角坐标平面上三点.将先向右平移3个单位,再向上平移3个单位,画出平移后的图形;以点为位似中心,位似比为2,将放大,在轴右侧画出放大后的图形;填空:面积为 .20(8分)如图,直线y=x与双曲线y=(k0,x0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k0,x0)交
6、于点B(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值21(10分)已知:如图,AB为O的直径,C是BA延长线上一点,CP切O于P,弦PDAB于E,过点B作BQCP于Q,交O于H,(1)如图1,求证:PQPE;(2)如图2,G是圆上一点,GAB30,连接AG交PD于F,连接BF,若tanBFE3,求C的度数;(3)如图3,在(2)的条件下,PD6,连接QC交BC于点M,求QM的长22(10分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选
7、择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球109.59.510899.5971045.5109.59.510篮球9.598.58.5109.510869.5109.598.59.56整理、描述数据:按如下分数段整理、描述这两组样本数据: (说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.759.510篮球8.819.259.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项
8、目整体水平较高.小军说:篮球项目整体水平较高.你同意_的看法,理由为_.(至少从两个不同的角度说明推断的合理性)23(12分)如图,直线y=x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D(1)求抛物线y=x2+bx+c的解析式(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2x11结合函数的图象,求x3的取值范围;若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值24(14分)十八大报
9、告首次提出建设生态文明,建设美丽中国十九大报告再次明确,到2035年美丽中国目标基本实现森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)122001150125001340015894. 0917490.9219545.2220768.73森林覆盖率12.7%12%12.98%13.92%16
10、.55%18.21%20.36%21.63%表2北京森林面积和森林覆盖率 清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.7437.8852.0558.81森林覆盖率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第 次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公
11、顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到 万公顷(用含a和b的式子表示)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据折叠前后对应角相等可知解:设ABE=x,根据折叠前后角相等可知,C1BE=CBE=50+x,所以50+x+x=90,解得x=20故选B“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等2、D【解析】分析:根据轴对称图形与中心对称图形的概念分
12、别分析得出答案详解:A是轴对称图形,也是中心对称图形,故此选项错误; B不是轴对称图形,也不是中心对称图形,故此选项错误; C不是轴对称图形,是中心对称图形,故此选项错误; D是轴对称图形,不是中心对称图形,故此选项正确 故选D点睛:本题考查了轴对称图形和中心对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合; 中心对称图形是要寻找对称中心,图形旋转180后与原图形重合3、B【解析】试题分析:分a0和a0两种情况讨论:当a0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四
13、象限,B选项图象符合故选B考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用4、A【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.【详解】,解不等式得:x-1,由于原不等式组无解,所以m-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.5、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案详解: 主视图和俯视图的长要相等, 只有D选项中的长和俯视图不相等,故选D点睛:本题主要考查的就是三视图的画法,属于基础
14、题型三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等6、C【解析】AMN的面积=APMN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0x1;(2)1x2;解:(1)当0x1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且ACBD;MNAC,MNBD;AMNABD,=,即,=,MN=x;y=APMN=x2(0x1),0,函数图象开口向上;(2)当1x2,如图,同理证得,CDBCNM,=,即=,MN=2-x;y=APMN=x(2-x),y=-x2+x;-0,函数图象开口向下;综上答案C的图
15、象大致符合故选C本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想7、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案【详解】解:A、a3a=2a,故此选项错误;B、(ab2)0=1,故此选项错误;C、故此选项错误;D、=9,正确故选D【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键8、B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可【详解】解:半径OC垂直于弦AB,AD=DB= AB= 在RtAOD中,OA2
16、=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,解得,OA=4OD=OC-CD=3,AO=OE,AD=DB,BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.10、B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,2k0,得
17、k0,k20,函数y=(k2)x+1k图象经过一、二、四象限,故选B.二、填空题(共7小题,每小题3分,满分21分)11、3或1【解析】菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得ACBD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可【详解】解:当点E在对角线交点左侧时,如图1所示:菱形ABCD中,边长为1,对角线AC长为6,ACBD,BO= =4,tanEAC=,解得:OE=1,BE=BOOE=41=3,当点E在对角线交点左侧时,如图2所示:菱形ABCD中,边长为1,对角线AC长为6,ACBD,BO=4,t
18、anEAC=,解得:OE=1,BE=BOOE=4+1=1,故答案为3或1【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长12、5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.13、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.14、【解析】根据题意作图,可得A
19、B=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即,解得故答案为:【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键15、【解析】过点A作AEDC,利用向量知识解题.【详解】解:过点A作AEDC于E,AEDC,BCDC,AEBC,又ABCD,四边形AECB是矩形,ABEC,AEBC4,DE=2,AB=EC=2=DC,故答案为.【点睛】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部
20、分地区将向量放在高中阶段学习.16、3或1【解析】由四边形ABCD是平行四边形得出:ADBC,AD=BC,ADB=CBD,又由FBM=CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果【详解】解:四边形ABCD是平行四边形,ADBC,AD=BC,ADB=CBD,FBM=CBM,FBD=FDB,FB=FD=12cm,AF=6cm,AD=18cm,点E是BC的中点,CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为
21、顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1故答案为3或1【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识注意掌握分类讨论思想的应用是解此题的关键17、3 4 【解析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】解:,无理数在连续整数3与4之间【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.三、解答题(共7小题,满分69分)18、(1)y1=-20x+1200, 800;(2)15x40.【解析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=
22、kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-2020+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0x20时,y=-20x+1200,当20x60时,y=y1+y2=-20x+1200+25x-500=5x+700,由题意解得该不等式组的解集为15x40所以发生严重干旱时x的范围为15x40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力
23、,掌握一次函数和一元一次不等式的解法是解题的关键.19、(1)详见解析;(2)详见解析;(3).【解析】(1)分别画出A、B、C三点的对应点即可解决问题;(2)由(1)得各顶点的坐标,然后利用位似图形的性质,即可求得各点的坐标,然后在图中作出位似三角形即可(3)求得所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,即为所求作;(2)如图,即为所求作;(3)面积=44-24-22-24=6.【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.20、(1)k=b
24、2+4b;(2)【解析】试题分析:(1)分别求出点B的坐标,即可解答(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作ADx轴,BEx轴,CFBE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)将直线y=向上平移4个单位长度后,与y轴交于点C,平移后直线的解析式为y=+4,点B在直线y=+4上,B(b,b+4),点B在双曲线y=上,B(b,),令b+4=得(2)分别过点A、B作ADx轴,BEx轴,CFBE于点F,设A(3x,x),OA=3BC,BCOA,CFx轴,CF=OD,点A、B在双曲线y=
25、上,3bb=,解得b=1,k=311=考点:反比例函数综合题21、(1)证明见解析(2)30(3) QM=【解析】试题分析:(1)连接OP,PB,由已知易证OBP=OPB=QBP,从而可得BP平分OBQ,结合BQCP于点Q,PEAB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得CPO=PEC=90,由此可得C=OPE,设EF=x,则由GAB=30,AEF=90可得AE=,在RtBEF中,由tanBFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sinOPE=,由此可得OPE=30,则C=30;(3)如下图3,连接BG,过点O
26、作OKHB于点K,结合BQCP,OPQ=90,可得四边形POKQ为矩形由此可得QK=PO,OKCQ从而可得KOB=C=30;由已知易证PE=,在RtEPO中结合(2)可解得PO=6,由此可得OB=QK=6;在RtKOB中可解得KB=3,由此可得QB=9;在ABG中由已知条件可得BG=6,ABG=60;过点G作GNQB交QB的延长线于点N,由ABG=CBQ=60,可得GBN=60,从而可得解得GN=,BN=3,由此可得QN=12,则在RtBGN中可解得QG=,由ABG=CBQ=60可知BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.试题解析:(1)如下图1,
27、连接OP,PB,CP切O于P,OPCP于点P,又BQCP于点Q,OPBQ,OPB=QBP,OP=OB,OPB=OBP,QBP=OBP,又PEAB于点E,PQ=PE;(2)如下图2,连接,CP切O于P,PDAB 在Rt中,GAB=30设EF=x,则在Rt中,tanBFE=3 在RtPEO中, 30;(3)如下图3,连接BG,过点O作于K,又BQCP,四边形POKQ为矩形,QK=PO,OK/CQ,30,O 中PDAB于E ,PD=6 ,AB为O的直径,PE= PD= 3,根据(2)得,在RtEPO中,OB=QK=PO=6,在Rt中, ,QB=9,在ABG中,AB为O的直径,AGB=90,BAG=3
28、0,BG=6,ABG=60,过点G作GNQB交QB的延长线于点N,则N=90,GBN=180-CBQ-ABG=60,BN=BQcosGBQ=3,GN=BQsinGBQ=,QN=QB+BN=12,在RtQGN中,QG=,ABG=CBQ=60,BM是BQG的角平分线,QM:GM=QB:GB=9:6,QM=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及CBQ=ABG=60;(2)再过点G作GNQB并交QB的延长线于点N,解出BN和GN的长,这样即可在RtQGN中求得QG的长,最后在BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长
29、了.22、130 小明 平均数接近,而排球成绩的中位数和众数都较高 【解析】根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论【详解】解:补全表格成绩:人数项目10排球11275篮球021103达到优秀的人数约为(人);故答案为130;同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论故答案为小明,平均数接近,而排球成绩的中位数和众数都较高【点睛】本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体23、(2)y=x24x+3;
30、(2)2x34,m的值为或2【解析】(2)由直线y=x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)先求得抛物线的顶点坐标为D(2,2),当直线l2经过点D时求得m=2;当直线l2经过点C时求得m=3,再由x2x22,可得2y33,即可2x3+33,所以2x34;分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2
31、+bx+c得:,解得 y=x24x+3;(2)直线l2平行于x轴,y2=y2=y3=m,如图,y=x24x+3=(x2)22,顶点为D(2,2),当直线l2经过点D时,m=2;当直线l2经过点C时,m=3x2x22,2y33,即2x3+33,得2x34,如图,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QNx2x22,x3x2=x2x2,即 x3=2x2x2,l2x轴,即PQx轴,点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,2x2=x22,即x2=4x2,x3=3x24,将点Q(x2,y2)的坐标代入y=
32、x24x+3得y2=x224x2+3,又y2=y3=x3+3x224x2+3=x3+3,x224x2=(3x24)即 x22x24=2,解得x2=,(负值已舍去),m=()24+3=如图,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ由上可得点P、Q关于直线l2对称,点N在抛物线的对称轴l2:x=2,又点N在直线y=x+3上,y3=2+3=2,即m=2故m的值为或2【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识在(2)中注意待定系数法的应用;在(2)注意
33、利用数形结合思想;在(2)注意分情况讨论本题考查知识点较多,综合性较强,难度较大24、(1)四;(2)见解析;(3) .【解析】(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;故答案为四;(2)补全折线统计图,如图所示:(3)根据题意得:27.15%,则全国森林面积可以达到万公顷,故答案为.【点睛】此题考查了折线统计图,弄清题中的数据是解本题的关键