《浙江省乐清市知临中学2023年高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省乐清市知临中学2023年高考数学全真模拟密押卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D112陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于
2、奕正合撰的帝京景物略一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )ABCD3已知m为实数,直线:,:,则“”是“”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件4已知菱形的边长为2,则()A4B6CD5已知,则 ()ABCD6下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )ABCD7已知数列的前项和为,且,则( )ABCD8已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )A10B
3、32C40D809已知,则的取值范围是()A0,1BC1,2D0,210已知向量,且与的夹角为,则( )AB1C或1D或911在四面体中,为正三角形,边长为6,则四面体的体积为( )ABC24D12偶函数关于点对称,当时,求( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13等边的边长为2,则在方向上的投影为_14已知正方体棱长为2,点是上底面内一动点,若三棱锥的外接球表面积恰为,则此时点构成的图形面积为_.15抛物线的焦点到准线的距离为 16能说明“在数列中,若对于任意的,则为递增数列”为假命题的一个等差数列是_.(写出数列的通项公式)三、解答题:共70分。解答应写出文字说明、
4、证明过程或演算步骤。17(12分)改革开放40年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各50人,进行问卷测评,所得分数的频率分布直方图如图所示.规定得分在80分以上为交通安全意识强.安全意识强安全意识不强合计男性女性合计()求的值,并估计该城市驾驶员交通安全意识强的概率;()已知交通安全意识强的样本中男女比例为4:1,完成22列联表,并判断有多大把握认为交通安全意识与性别有关;()在()的条件下,从交通安全意识强的驾驶员中随机抽取2人,求抽
5、到的女性人数的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82818(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.19(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.20(12分)如图,在四棱锥中,是等边三角形,.(1)若,求证:平面;(2)若,求二面角的正弦值21(12分)在平面直角坐标系中,已知向量,其中.(1)求
6、的值;(2)若,且,求的值.22(10分)如图,在三棱柱中,已知四边形为矩形,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意计算,解不等式得到答案.【详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.2、C【解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解
7、】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.3、A【解析】根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可【详解】当m=1时,两直线方程分别为直线l1:x+y1=0,l2:x+y2=0满足l1l2,即充分性成立,当m=0时,两直线方程分别为y1=0,和2x2=0,不满足条件当m0时,则l1l2,由得m23m+2=0得m=1或m=2,由得m2,则m=1,即“m=1”是
8、“l1l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.4、B【解析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果【详解】如图所示,菱形形的边长为2,且,故选B【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题.5、B【解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式
9、的应用,考查计算能力6、C【解析】令圆的半径为1,则,故选C7、C【解析】根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.8、D【解析】根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.9、D【解析】设,可得,构造()22,结合,可得,根据向量减法
10、的模长不等式可得解.【详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10、C【解析】由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题11、A【解析】推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解: 在四面体中,为等边三角形,边长为6,分别取的中点,连结,则,且,平面,平面,四面体的体积为:.故答案为:.【点睛】本题考查四面
11、体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.12、D【解析】推导出函数是以为周期的周期函数,由此可得出,代值计算即可.【详解】由于偶函数的图象关于点对称,则,则,所以,函数是以为周期的周期函数,由于当时,则.故选:D.【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立直角坐标系,结合向量的坐标运算求解在方向上的投影即可.【详解】建立如图所示的平面直角坐标系,由题意可知:,则:,且,据此可知在方向上的投影为.【点睛】本题主要考
12、查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.14、.【解析】设三棱锥的外接球为球,分别取、的中点、,先确定球心在线段和中点的连线上,先求出球的半径的值,然后利用勾股定理求出的值,于是得出,再利用勾股定理求出点在上底面轨迹圆的半径长,最后利用圆的面积公式可求出答案【详解】如图所示,设三棱锥的外接球为球,分别取、的中点、,则点在线段上,由于正方体的棱长为2,则的外接圆的半径为,设球的半径为,则,解得.所以,则而点在上底面所形成的轨迹是以为圆心的圆,由于,所以,因此,点所构成的图形的面积为.【点睛】本题考查三棱锥的外接球的相关问题,根据立体几何中的线
13、段关系求动点的轨迹,属于中档题.15、【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质16、答案不唯一,如【解析】根据等差数列的性质可得到满足条件的数列.【详解】由题意知,不妨设, 则,很明显为递减数列,说明原命题是假命题.所以,答案不唯一,符合条件即可.【点睛】本题考查对等差数列的概念和性质的理解,关键是假设出一个递减的数列,还需检验是否满足命题中的条件,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、().0.2()见解析,有的把握认为交通安全意识与性别有关()见解析,【解析】()直接根据频率和为1计算得到答案.()完善列联
14、表,计算,对比临界值表得到答案.()的取值为,计算概率得到分布列,计算数学期望得到答案.【详解】() ,解得.所以该城市驾驶员交通安全意识强的概率.()安全意识强安全意识不强合计男性163450女性44650合计2080100,所以有的把握认为交通安全意识与性别有关()的取值为 所以的分布列为期望.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和综合应用能力.18、(1)见解析,(2)最小正整数的值为35.【解析】(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出 的取值范围,进而求出最小值.【详解】解析:(1)由题
15、意可得,当时,当时,整理可得,是首项为1,公差为1的等差数列,.(2)由(1)可得,解得,最小正整数的值为35.【点睛】本题考查了等差中项,考查了等差数列的定义,考查了 与 的关系,考查了裂项相消求和.当已知有 与 的递推关系时,常代入 进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.19、(1);(2)【解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2)将直线参数方程代入圆的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】(1)直线的参数方程为(为参数),消去;得曲线的极坐标方程为.由,可得,即曲线的直角坐标方程为;(2)
16、将直线的参数方程(为参数)代入的方程,可得,设,是点对应的参数值,则.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.20、(1)详见解析(2)【解析】(1)如图,作,交于,连接.因为,所以是的三等分点,可得.因为,所以,因为,所以,因为,所以,所以, 因为,所以,所以,因为平面,平面,所以平面.又,平面,平面,所以平面.因为,、平面,所以平面平面,所以平面.(2)因为是等边三角形,所以.又因为,所以,所以.又,平面,所以平面.因为平面,所以平面平面.在平面内作平面.以B点为坐标原点,分别以所在直线为轴,建立如图所示的空间直角坐标系,则,所以,.设
17、为平面的法向量,则,即,令,可得.设为平面的法向量,则,即,令,可得.所以,则,所以二面角的正弦值为.21、(1)(2).【解析】(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行的坐标关系解得.【详解】(1)由题,向量,则.(2),.,整理得,化简得,即,即.【点睛】本题考查平面向量的坐标运算,以及向量平行,是常考题型.22、(1)见解析;(2)【解析】(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.【详解】(1)如图,过点作交于,连接,设,连接,又为的角平分线,四边形为正方形,又,又为的中点,又平面,平面,又平面,平面平面,(2)在中,在中,又,又,平面,平面,故建立如图空间直角坐标系,则,设平面的一个法向量为,则,令,得,设平面的一个法向量为,则,令,得,由图示可知二面角是锐角,故二面角的余弦值为.【点睛】本题考查空间的面面垂直关系的证明,二面角的计算,在证明垂直关系时,注意运用平面几何中的等腰三角形的“三线合一”,勾股定理、菱形的对角线互相垂直,属于基础题.