江西省鄱阳县第二中学2023届高三六校第一次联考数学试卷含解析.doc

上传人:lil****205 文档编号:88306558 上传时间:2023-04-25 格式:DOC 页数:19 大小:2.08MB
返回 下载 相关 举报
江西省鄱阳县第二中学2023届高三六校第一次联考数学试卷含解析.doc_第1页
第1页 / 共19页
江西省鄱阳县第二中学2023届高三六校第一次联考数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《江西省鄱阳县第二中学2023届高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省鄱阳县第二中学2023届高三六校第一次联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为( )ABCD2易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为

2、阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为ABCD3设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是( )A是偶函数B是奇函数C是奇函数D是奇函数4已知,若,则向量在向量方向的投影为( )ABCD5若复数满足,则对应的点位于复平面的( )A第一象限B第二象限C第三象限D第四象限6双曲线的渐近线方程为( )ABCD7一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )ABCD8已知的展开式中的常数项为8,则实数( )A2B-2C-3D39已知,为圆上的动

3、点,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是( )ABCD10已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( )ABCD11已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D109512已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()AB2CD二、填空题:本题共4小题,每小题5分,共20分。13若,则_.14已知的展开式中含有的项的系数是,则展开式中各项系数和为_.15的展开式中项的系数为_16在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且

4、满足,则三棱锥的体积的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为:(其中为参数),直线的参数方程为(其中为参数)(1)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求曲线的极坐标方程;(2)若曲线与直线交于两点,点的坐标为,求的值.18(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.19(12分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.(1

5、)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.20(12分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.21(12分) 2018石家庄一检已知函数(1)若,求函数的图像在点处的切线方程;(2)若函数有两个极值点,且,求证:22(10分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:()对任意的;()对任意的,且.若,求数列是等比数列的充要条件.求证:数列是等比数列,其中.参考答案一、选择题:本题共12小

6、题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,令,解得,故当时,当,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区

7、间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.2、A【解析】阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.3、C【解析】根据函数奇偶性的性质即可得到结论【详解】解:是奇函数,是偶函数,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确为偶函数,故错误,故选:【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶

8、性的定义是解决本题的关键4、B【解析】由,再由向量在向量方向的投影为化简运算即可【详解】, 向量在向量方向的投影为.故选:B.【点睛】本题考查向量投影的几何意义,属于基础题5、D【解析】利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.6、C【解析】根据双曲线的标准方程,即可写出渐近线方程.【详解】 双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.7、B【解析】根据已知可知水面的最

9、大高度为正方体面对角线长的一半,由此得到结论【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题8、A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.9、A【解析】

10、由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.【点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.10、A【解析】由题可得出的坐标为,再利用点对称的性质,即可求出和.【详解】根据题意,所以点的坐标为,又 ,所以.故选:A.【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.11、D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的

11、前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的12、A【解析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABCBCOA2,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用关系式求出函数的被积函数的原函数,进一步求出的值【详解】解:若,则,即,所以故答案为:【点睛】本题

12、考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题14、1【解析】由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解【详解】解:由的展开式的通项,令,得含有的项的系数是,解得,令得:展开式中各项系数和为,故答案为:1【点睛】本题考查了二项式定理及展开式通项公式,属于中档题15、40【解析】根据二项定理展开式,求得r的值,进而求得系数【详解】根据二项定理展开式的通项式得 所以 ,解得 所以系数【点睛】本题考查了二项式定理的简单应用,属于基础题16、【解析】根据与相似,过作于,利用体积公式求解OP最值,根据勾股定理得出,

13、利用函数单调性判断求解即可.【详解】在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,与相似,即,过作于,设,化简得:,根据函数单调性判断,时,取得最大值36,在正方体中平面.三棱锥体积的最大值为【点睛】本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)5【解析】(1)首先消去参数得到曲线的普通方程,再根据,得到曲线的极坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程,利用直线的参数方程中参数的几何意义得解;【详解】解:(1)曲线:消去参数得到:,由,得所以(2)代入,设,由

14、直线的参数方程参数的几何意义得:【点睛】本题考查参数方程、极坐标方程、普通方程的互化,以及直线参数方程的几何意义的应用,属于中档题18、(1)(2)【解析】(1)利用极坐标和直角坐标的互化公式,,即可求得结果.(2) 由的几何意义得,. 将代入抛物线C的方程,利用韦达定理,即可求得结果.【详解】(1)因为,代入得,所以抛物线C的极坐标方程为.(2)将代入抛物线C的方程得,所以,所以,由的几何意义得,.【点睛】本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.19、(1);(2).【解析】(1)根据抛物线的定义,结合已知条件,即可

15、容易求得结果;(2)设出直线的方程,联立抛物线方程,根据直线与抛物线相交则,结合由得到的斜率关系,即可求得斜率的范围.【详解】(1)因为动圆与圆外切,并与直线相切,所以点到点的距离比点到直线的距离大. 因为圆的半径为,所以点到点的距离等于点到直线的距离,所以圆心的轨迹为抛物线,且焦点坐标为.所以曲线的方程. (2)设,由得,由得且., ,同理由,得,即,所以,由,得且, 又且,所以的取值范围为.【点睛】本题考查由抛物线定义求抛物线方程,涉及直线与抛物线相交结合垂直关系求斜率的范围,属综合中档题.20、(1)(2)【解析】(1)设,根据直线的斜率公式即可求解;(2)设直线的方程为,联立直线与抛物

16、线方程,由韦达定理得,结合直线的斜率公式得到,换元后讨论的符号,求最值可求解.【详解】(1)设,因为,即直线的斜率为1.(2)显然直线的斜率存在,设直线的方程为.联立方程组,可得则,令,则则当时,;当且仅当,即时,解得时,取“=”号,当时,;当时,综上所述,当时,取得最大值,此时直线的方程是.【点睛】本题主要考查了直线的斜率公式,直线与抛物线的位置关系,换元法,均值不等式,考查了运算能力,属于难题.21、(1) (2)见解析【解析】试题分析:(1)分别求得和,由点斜式可得切线方程;(2)由已知条件可得有两个相异实根,进而再求导可得,结合函数的单调性可得,从而得证.试题解析:(1)由已知条件,当

17、时,当时,所以所求切线方程为 (2)由已知条件可得有两个相异实根,令,则,1)若,则,单调递增,不可能有两根;2)若,令得,可知在上单调递增,在上单调递减,令解得,由有,由有,从而时函数有两个极值点,当变化时,的变化情况如下表单调递减单调递增单调递减因为,所以,在区间上单调递增,另解:由已知可得,则,令,则,可知函数在单调递增,在单调递减,若有两个根,则可得,当时, ,所以在区间上单调递增,所以22、(1);(2);证明见解析.【解析】(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;当,由等比数列的定义和不等式的性质,化简变形,即可得到所求结论【详解】解:(1),且为非零常数,可得,可得数列的首项为,公差为的等差数列,可得,前项和为;(2)若,可令,且,即,对任意的,可得,可得,数列是等比数列,则,可得,即,又,即有,即,数列是等比数列的充要条件为;证明:对任意的,当,可得,即以为首项、为公比的等比数列;同理可得以为首项、为公比的等比数列;对任意的,可得,即有,所以对,可得,即且,则,可令,故数列,是以为首项,为公比的等比数列,其中【点睛】本题考查新定义的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法和推理、运算能力,属于难题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁