江苏省涟水一中2023年高考临考冲刺数学试卷含解析.doc

上传人:茅**** 文档编号:88306546 上传时间:2023-04-25 格式:DOC 页数:17 大小:1.91MB
返回 下载 相关 举报
江苏省涟水一中2023年高考临考冲刺数学试卷含解析.doc_第1页
第1页 / 共17页
江苏省涟水一中2023年高考临考冲刺数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《江苏省涟水一中2023年高考临考冲刺数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省涟水一中2023年高考临考冲刺数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数有三个不同的零点 (其中),则 的值为( )ABCD2的展开式中,满足的的系数之和为( )ABCD3设Py |yx21,xR,Qy |y2x,xR,则AP QBQ PCQDQ 4已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是( )ABCD5已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )ABCD6已知是虚数单位,若,则实数( )A或B-1或1C1D7设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的

3、两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是( )ABCD8已知二次函数的部分图象如图所示,则函数的零点所在区间为( )ABCD9将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件10五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )ABCD11已知为一条直线,为两个不同的平面,则下列说法正确的是(

4、 )A若,则B若,则C若,则D若,则12己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,垂足为,若的面积为,则到的距离为( )ABC8D6二、填空题:本题共4小题,每小题5分,共20分。13我国古代数学著作九章算术中记载“今有人共买物,人出八,盈三;人出七,不足四问人数、物价各几何?”设人数、物价分别为、,满足,则_,_14设的内角的对边分别为,若,则_15在平面直角坐标系中,已知圆,圆直线与圆相切,且与圆相交于,两点,则弦的长为_16已知数列满足,且恒成立,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足:对一切成立.(1)求

5、数列的通项公式;(2)求数列的前项和.18(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,求四边形面积的最大值.19(12分)在三棱锥中,是边长为的正三角形,平面平面,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.20(12分)如图,D是在ABC边AC上的一点,BCD面积是ABD面积的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求边AC的长21(12分)已知,且.(1)求的最小值;(2)证明:.22(10分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.参考答案一、选择题:

6、本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】令,构造,要使函数有三个不同的零点(其中),则方程需要有两个不同的根,则,解得或,结合的图象,并分,两个情况分类讨论,可求出的值.【详解】令,构造,求导得,当时,;当时,故在上单调递增,在上单调递减,且时,时,可画出函数的图象(见下图),要使函数有三个不同的零点(其中),则方程需要有两个不同的根(其中),则,解得或,且,若,即,则,则,且,故,若,即,由于,故,故不符合题意,舍去. 故选A. 【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.2、B【解析】,有,三种情形,用中的

7、系数乘以中的系数,然后相加可得【详解】当时,的展开式中的系数为当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为故选:B【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键3、C【解析】解:因为P =y|y=-x2+1,xR=y|y1,Q =y| y=2x,xR =y|y0,因此选C4、B【解析】先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可【详解】由题意,双曲线的一条渐近线方程为,即,是直线上任意一点,则直线与直线的距离,圆与双曲线的右支没有公共点,则,即,又故的取值范围为,故选:B【点睛】本题主要考查了直线和双

8、曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题5、D【解析】由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.6、B【解析】由题意得,然后求解即可【详解】,.又,.【点睛】本题考查复数的运算,属于基础题7、C【解析】连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,且,

9、解得椭圆的离心率. 故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.8、B【解析】由函数f(x)的图象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上单调递增,又g(0)1b0,g(1)e2b0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.9、A【解析】求出函数的解析式,由函数为偶函数得出的表达式,然后利用充分条件和必要条件的定义判断即可.【详解】将函数的图象沿轴向左平移个单位长度,得到的图象对应函数的解析式为,若函数为偶函数,则,解得,当时,.因

10、此,“”是“是偶函数”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用图象变换求三角函数解析式以及利用三角函数的奇偶性求参数,考查运算求解能力与推理能力,属于中等题.10、A【解析】列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概

11、型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.11、D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.12、D【解析】作,垂足为,过点N作,垂足为G,设,则,结合图形可得,从而可求出,进而可求得,由的面积即可求出,再结合为线段的中点,即可求出到的距离【详解】如图所示,作,垂足为,设,由,得,则,

12、.过点N作,垂足为G,则,所以在中,所以,所以,在中,所以,所以,所以 解得,因为,所以为线段的中点,所以F到l的距离为故选:D【点睛】本题主要考查抛物线的几何性质及平面几何的有关知识,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】利用已知条件,通过求解方程组即可得到结果【详解】设人数、物价分别为、,满足,解得,.故答案为:;.【点睛】本题考查函数与方程的应用,方程组的求解,考查计算能力,属于基础题14、或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角用正弦定理;,则;可得考点:运用正弦定理解三角形(注意多解的情况判断)15、【解析】

13、利用直线与圆相切求出斜率,得到直线的方程,几何法求出【详解】解:直线与圆相切,圆心为由,得或,当时,到直线的距离,不成立,当时,与圆相交于,两点,到直线的距离,故答案为【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题16、【解析】易得,所以是等差数列,再利用等差数列的通项公式计算即可.【详解】由已知,因,所以,所以数列是以为首项,3为公差的等差数列,故,所以.故答案为:【点睛】本题考查由递推数列求数列中的某项,考查学生等价转化的能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)先通过求得,再由得,和条件中的式子作差可得

14、答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1),当时,当时,得:,适合,故;(2),.【点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.18、(1)(2)【解析】(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得: 在中,则,即,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题19、(1)证明见解析;(2).【解析】(1)取 中点,连接,证明平面,由线面垂直的性质可得;(2)由,即

15、可求得三棱锥的体积【详解】解:(1)证明:取中点D,连接,.因为,所以且,因为,平面,平面,所以平面.又平面,所以;(2)解:因为平面,平面,所以平面平面,过N作于E,则平面,因为平面平面,平面平面,平面,所以平面,又因为平面,所以,由于,所以所以,所以.【点睛】本题考查线面垂直,考查三棱锥体积的计算,解题的关键是掌握线面垂直的判定与性质,属于中档题20、();()【解析】()利用三角形面积公式以及并结合正弦定理,可得结果.()根据,可得,然后使用余弦定理,可得结果.【详解】(),所以所以;(),所以,所以,所以,所以边【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公

16、式,属中档题.21、(1)(2)证明见解析【解析】(1)利用基本不等式即可求得最小值;(2)关键是配凑系数,进而利用基本不等式得证【详解】(1),当且仅当“”时取等号,故的最小值为;(2),当且仅当时取等号,此时故【点睛】本题主要考查基本不等式的运用,属于基础题22、(1);(2)【解析】(1)根据奇函数定义,可知;令则,结合奇函数定义即可求得时的解析式,进而得函数的解析式;(2)根据零点定义,可得,由函数图像分析可知曲线与直线在第三象限必1个交点,因而需在第一象限有2个交点,将与联立,由判别式及两根之和大于0,即可求得的取值范围.【详解】(1)因为函数为奇函数,且,故;当时,则;故.(2)令,解得,画出函数关系如下图所示,要使曲线与直线有3个交点,则2个交点在第一象限,1个交点在第三象限,联立,化简可得,令,即, 解得,所以实数的取值范围为.【点睛】本题考查了根据函数奇偶性求解析式,分段函数图像画法,由函数零点个数求参数的取值范围应用,数形结合的应用,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁