《浙江地区2022-2023学年中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江地区2022-2023学年中考三模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习2一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字16)朝上一
2、面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()ABCD3如图,在RtABC中,ACB90,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD4下列事件中,属于必然事件的是( )A三角形的外心到三边的距离相等B某射击运动员射击一次,命中靶心C任意画一个三角形,其内角和是 180D抛一枚硬币,落地后正面朝上5用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A cmB3cmC4cmD4cm6如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作C
3、Ex轴交双曲线于点E,连接BE,则BCE的面积为()A5B6C7D87有三张正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD8某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A10,1B7,8C1,6.1D1,69化简(a2)a5所得的结果是( )Aa7Ba7Ca10Da1010如图所示,某
4、办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角是45,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:) A30.6米B32.1 米C37.9米D39.4米二、填空题(共7小题,每小题3分,满分21分)11如图,在ABC中,ACB=90,A=45,CDAB于点D,点P在线段DB上,若AP2-PB2=48,则PCD的面积为_.12如图,平面直角坐标系中,经过点B(4,0)的直线ykx+b与直线ymx+2相交于点A(,-1),则不等式mx+2kx+b0的解集为_13一次函数
5、y=kx+b的图象如图所示,当y0时,x的取值范围是_14如图,四边形OABC中,ABOC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若BDE、OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_.15如图,在中,AB为直径,点C在上,的平分线交于D,则_16株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_17定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,则P,Q的“实际距离”为5,即或环保低碳的共享单车,
6、正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则_三、解答题(共7小题,满分69分)18(10分)如图,在RtABC中,B=90,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使BCM=2A判断直线MN与O的位置关系,并说明理由;若OA=4,BCM=60,求图中阴影部分的面积19(5分)求抛物线y=x2+x2与x轴的交点坐标20(8分)已知平行四边形尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:21(10分)解不等式组:,并把解集在数
7、轴上表示出来。22(10分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD,求DD和AF的长;(2)如图,当矩形ABCD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值23(12分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60,眼睛离地面的距离ED为1.5米试帮助小华求出旗杆AB的高度(结果精确到0.1米,).24(14分)如图,正方形OABC绕着点O逆时针旋转4
8、0得到正方形ODEF,连接AF,求OFA的度数参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.2、B【解析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案【详解】一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.得到的两位数是3的倍数的概率为: =.故答
9、案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.3、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键4、C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断详解:A、三角形的
10、外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、C【解析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2即为圆锥的底面半径,利用勾股定理可得
11、圆锥形筒的高【详解】L4(cm);圆锥的底面半径为422(cm),这个圆锥形筒的高为(cm)故选C【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形6、C【解析】作辅助线,构建全等三角形:过D作GHx轴,过A作AGGH,过B作BMHC于M,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论【详解】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,AD
12、CDBC,ADCDCB90,易得AGDDHCCMB(AAS),AGDHx1,DGBM,GQ1,DQ,DHAGx1,由QG+DQBMDQ+DH得:11x,解得x2,D(2,3),CHDGBM14,AGDH1x1,点E的纵坐标为4,当y4时,x,E(,4),EH2,CECHHE4,SCEBCEBM47;故选C【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题7、C【解析】画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】运用
13、列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件8、D【解析】根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可【详解】解:这11个数据的中位数是第8个数据,且中位数为1,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为万元故选:【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键9、B【解析】分析:根据同底数幂的乘法计算即可,计算时注意确定符号.详解: (-a2)a
14、5=-a7.故选B.点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.10、D【解析】解:延长AB交DC于H,作EGAB于G,如图所示,则GH=DE=15米,EG=DH,梯坎坡度i=1:,BH:CH=1:,设BH=x米,则CH=x米,在RtBCH中,BC=12米,由勾股定理得:,解得:x=6,BH=6米,CH=米,BG=GHBH=156=9(米),EG=DH=CH+CD=+20(米),=45,EAG=9045=45,AEG是等腰直角三角形,AG=EG=+20(米),AB=AG+BG=+20+939.4(米)故选D二、填空题(共7小题,每小题3分,满分2
15、1分)11、6【解析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48,利用平方差公式及线段的和差公式将其变形可得CDPD=12,利用PCD的面积 =CDPD可得.【详解】解: 在ABC中,ACB=90,A=45,B=45,AC=BC,CDAB,AD=BD=CD=AB,AP2-PB2=48,(AP+PB)(AP-PB)=48,AB(AD+PD-BD+DP)=48,AB2PD=48,2CD2PD=48,CDPD=12, PCD的面积=CDPD=6.故答案为6.【点睛】此题考查等腰三角形的
16、性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一12、4x【解析】根据函数的图像,可知不等式mx+2kx+b0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是4x.故答案为4x.13、【解析】试题解析:根据图象和数据可知,当y0即图象在x轴的上方,x1故答案为x114、16【解析】根据题意得SBDE:SOCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由SOCE=9得ab=8,故可得解.【详解】解:设D(a,b)则A(a,0),B(a,2b)SBDE:SOCE=1:9BD:OC=1:3C(0,3b)COE
17、高是OA的,SOCE=3ba =9解得ab=8k=a2b=2ab=28=16故答案为16.【点睛】此题利用了:过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式15、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度16、1.06104【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了
18、多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:106001.06104,故答案为:1.06104【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值17、1【解析】根据两点间的距离公式可求m的值.【详解】依题意有,解得,故答案为:1【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键三、解答题(共7小题,满分69分)18、(1)相切;(2)【解析】试题分析:(1)MN是O切线,只要证明OCM=90即可(2)求出AOC以及BC,根据S阴=S扇
19、形OACSOAC计算即可试题解析:(1)MN是O切线理由:连接OCOA=OC,OAC=OCA,BOC=A+OCA=2A,BCM=2A,BCM=BOC,B=90,BOC+BCO=90,BCM+BCO=90,OCMN,MN是O切线(2)由(1)可知BOC=BCM=60,AOC=120,在RTBCO中,OC=OA=4,BCO=30,BO=OC=2,BC=2S阴=S扇形OACSOAC=考点:直线与圆的位置关系;扇形面积的计算19、(1,0)、(2,0)【解析】试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可试题解析:解:令,即解得:,该抛物线与轴的交点坐标为(2,0),(1,0)20、(1)见解
20、析;(2)见解析.【解析】试题分析:(1)作BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出ABDC,ADBC,故1=2,3=1再由AF平分BAD得出1=3,故可得出2=1,据此可得出结论试题解析:(1)如图所示,AF即为所求;(2)四边形ABCD是平行四边形,ABDC,ADBC,1=2,3=1AF平分BAD,1=3,2=1,CE=CF考点:作图基本作图;平行四边形的性质.21、,解集在数轴上表示见解析【解析】试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可试题解析:由得:由得:不等式组的解集为:解集在数轴上表
21、示为:22、(1)DD=1,AF= 4;(2);(1)【解析】(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,只要证明CDD是等边三角形即可解决问题;如图中,连接CF,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90,证明CADFAC,即可解决问题;【详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC
22、=ADC=90=60,DCD=60,CDD是等边三角形,DD=CD=1如图中,连接CFCD=CD,CF=CF,CDF=CDF=90,CDFCDF,DCF=DCF=DCD=10在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGCB于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90ADC=ACF,CAD=FAC
23、,CADFAC,AC2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=23、11.9米【解析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【详解】BD=CE=6m,AEC=60,AC=CEtan60=6=661.73210.4m,AB=AC+DE=10.4+1.5=11.9m答:旗杆AB的高度是11.9米.24、25【解析】先利用正方形的性质得OA=OC,AOC=90,再根据旋转的性质得OC=OF,COF=40,则OA=OF,根据等腰三角形的性质得OAF=OFA,然后根据三角形的内角和定理计算OFA的度数【详解】解:四边形OABC为正方形,OA=OC,AOC=90,正方形OABC绕着点O逆时针旋转40得到正方形ODEF,OC=OF,COF=40,OA=OF,OAF=OFA,AOF=AOC+COF=90+40=130,OFA=(180-130)=25故答案为25【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了正方形的性质