《江西省吉安第八中学2022-2023学年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省吉安第八中学2022-2023学年中考数学仿真试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()Aa4Bbd0C|a|b|Db+c02在快速计算法中,法国的“小九九”从“
2、一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了如计算89时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则89=107+2=1那么在计算67时,左、右手伸出的手指数应该分别为( )A1,2B1,3C4,2D4,33下列关于事件发生可能性的表述,正确的是()A事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B体育彩票的中奖率为10%,则买100张彩票必有10张中奖C在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D掷两枚硬币,朝上的一面是一正面一反面的概率为
3、4下列实数中,为无理数的是()ABC5D0.31565如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C20D226在下列函数中,其图象与x轴没有交点的是()Ay=2xBy=3x+1Cy=x2Dy=7图(1)是一个长为2m,宽为2n(mn)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A2mnB(m+n)2C(m-n)2Dm2-n28的相反数是()AB-CD-9抛物线经过第一、三、四象限,则抛物线的顶点必在( )A第一象限B第二象限C第三
4、象限D第四象限10将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,ABC中,AB5,AC6,将ABC翻折,使得点A落到边BC上的点A处,折痕分别交边AB、AC于点E,点F,如果AFAB,那么BE_12如图,AB是O的直径,CD是弦,CDAB于点E,若O的半径是5,CD8,则AE_13七边形的外角和等于_14已知(x-ay)(x+ay),那么a=_15一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为_.16已知关于x的方程x22x+
5、n=1没有实数根,那么|2n|1n|的化简结果是_172018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F(1)求反比例函数的解析式;(2)求OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b的解集19(5分)如图,抛物线y=ax2+bx
6、+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标20(8分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普
7、通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?21(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两
8、年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.22(10分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生
9、2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率23(12分)有4张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n(1)请用列表或树状图的方式把(m,n)所有的结果表示出来(2)求选出的(m,n)在二、四象限的概率24(14分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为3
10、00元和500元设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案【详解】解:由数轴上点的位置,得a4b0c1dA、a4,故A不符合题意;B、bd0,故B不符合题意;C、|a|4,|b|2,|a|b|,故C符合题意;D、b+c0,故D不符合题意;故选:C【点睛】本题考查了有理数大小的比较、有理数的运算
11、,绝对值的性质,熟练掌握相关的知识是解题的关键2、A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为310=30,30+43=42,故选A点评:此题是定义新运算题型通过阅读规则,得出一般结论解题关键是对号入座不要找错对应关系3、C【解析】根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.【详解】解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C. 在同批次10000件产品中抽取100件发现有5件次品,则这
12、批产品中大约有500件左右的次品,正确.D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.故选:C.【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.4、B【解析】根据无理数的定义解答即可.【详解】选项A、是分数,是有理数;选项B、是无理数;选项C、5为有理数;选项D、0.3156是有理数;故选B【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.5、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形ABCD是平行四边形,AO=CO,BO=DO
13、,DC=AB=6,AC+BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解6、D【解析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可【详解】A正比例函数y=2x与x轴交于(0,0),不合题意;B一次函数y=-3x+1与x轴交于(,0),不合题意;C二次函数y=x2与x轴交于(0,0),不合题意;D反比例函数y=与x轴没有交点,符合题意;故选D7、C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1又原矩形的面积为4mn,中间空的部分的面积=(m+n)1-4mn=(m-n)1故选C8、B【
14、解析】+()=0,的相反数是故选B9、A【解析】根据二次函数图象所在的象限大致画出图形,由此即可得出结论【详解】二次函数图象只经过第一、三、四象限,抛物线的顶点在第一象限故选A【点睛】本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键10、D【解析】根据“左加右减、上加下减”的原则,将抛物线向左平移1个单位所得直线解析式为:;再向下平移3个单位为:故选D二、填空题(共7小题,每小题3分,满分21分)11、【解析】设BEx,则AE5xAFAF,CF6(5x)1+x,依据ACFBCA,可得,即,进而得到BE【详解】解:如图,由折叠可得,AFEAFE,AF
15、AB,AEFAFE,AEFAFE,AEAF,由折叠可得,AFAF,设BEx,则AE5xAFAF,CF6(5x)1+x,AFAB,ACFBCA,即,解得x,BE,故答案为:【点睛】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等12、2【解析】连接OC,由垂径定理知,点E是CD的中点,在直角OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可【详解】设AE为x,连接OC,AB是O的直径,弦CDAB于点E,CD8,CEO90,CEDE4,由勾股定理得:OC2CE2OE2,5242(5x)2,解得:x2
16、,则AE是2,故答案为:2【点睛】此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.13、360【解析】根据多边形的外角和等于360度即可求解【详解】解:七边形的外角和等于360故答案为360【点睛】本题考查了多边形的内角和外角的知识,属于基础题,解题的关键是掌握多边形的外角和等于36014、4【解析】根据平方差公式展开左边即可得出答案.【详解】(x-ay)(x+ay)=又(x-ay)(x+ay)解得:a=4故答案为:4.【点睛】本题考查的平方差公式:.15、【解析】解:根据题意可得:列表如下红1红2黄1黄2黄3红1红1,红2红1,黄1红1,黄2红1,黄3红2红2,红1红
17、2,黄1红2,黄2红2,黄3黄1黄1,红1黄1,红2黄1,黄2黄1,黄3黄2黄2,红1黄2,红2黄2,黄1黄2,黄3黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键16、1【解析】根据根与系数的关系得出b2-4ac=(-2)2-41(n-1)=-4n+80,求出n2,再去绝对值符号,即可得出答案【详解】解:关于x的方程x22x+n=1没有实数根,b2-4ac=(-2)2-41(n-1)=-4n+80,n2,|2n |-1-n=n-2-n+1=-1.故
18、答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.17、3.3081【解析】正确用科学计数法表示即可.【详解】解:33080=3.3081【点睛】科学记数法的表示形式为的形式, 其中1|a|10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.三、解答题(共7小题,满分69分)18、(1)y=;(2);(3)x1【解析】(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图
19、象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据OEF的面积=S矩形BCDOSODESOBFSCEF进行计算;(3)观察函数图象得到当x1时,一次函数图象都在反比例函数图象上方,即k2x+b【详解】(1)四边形DOBC是矩形,且点C的坐标为(1,4),OB=1,OD=4,点A为线段OC的中点,A点坐标为(3,2),k1=32=1,反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),OEF的面积=S矩形BCDOSODESOBFSCE
20、F=41411(1)(41)=;(3)由图象得:不等式不等式k2x+b的解集为x1【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可19、(1)y=x2x+3;(2)点D坐标为(,0);点M(,0).【解析】(1)应用待定系数法问题可解;(2)通过分类讨论研究APQ和CDO全等由已知求点D坐标,证明DNBC,从而得到DN为中线,问题可解【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得: ,抛物线解析式为:y=-x2-x+3;(2)存在点D,使得APQ和CDO全等,当D在线段OA上,
21、QAP=DCO,AP=OC=3时,APQ和CDO全等,tanQAP=tanDCO,OD=,点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件OC=3,OB=4,BC=5,DCB=CDB,BD=BC=5,OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,NDC=MDC,NDC=DCB,DNBC,则点N为AC中点DN时ABC的中位线,DN=DM=BC=,OM=DM-OD=点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识解答时,注意
22、数形结合20、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.【解析】1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题【详解】(1)设该商场购进LED灯泡x个,普通白炽
23、灯泡的数量为y个根据题意,得解得答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元则购进普通白炽灯泡(120a)个根据题意得W=(6045)a+(3025)(120a)=10a+110a+145a+25(120a)30%,解得a75,k=100,W随a的增大而增大,a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(12075)=45个答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元【点睛】本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建
24、立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.21、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700
25、(1+x)2=1183,解得:x1=0.3=30%,x2=2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183(1+30%)=1537.9(万平方米),1537.91500,2017年该市能完成计划目标【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解22、(1)详见解析;(2)72;(3)【解析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可
26、能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得【详解】解:(1) 抽 查的总人数为:(人) 类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、,画树状图得:恰好抽到一男一女的情况共有12 种,分别是 (恰好抽到一男一女)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、(1)详见解析;(2)P= 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点
27、数除以所有结果.试题解析: (1)画树状图得:则(m,n)共有12种等可能的结果:(2,-1),(2,3),(2, 4),(-1,2),(-1,3),(1, 4),(3,2),(3,-1),(3, 4),(4,2),(4,-1),(4,3).(2)(m,n)在二、四象限的(2,-1),(2,3),(-1,2),(3,2),(3, 4),(4,2),(4,-1),(4,3),所选出的m,n在第二、三四象限的概率为:P=点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定
28、义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.24、(1)w200x+8600(0x6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调
29、运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6x吨,A粮仓运往
30、C市粮食10x吨,A粮仓运往D市粮食12(10x)x+2吨,总运费w300x+500(6x)+400(10x)+800(x+2)200x+8600(0x6)(2)200x+86009000解得x2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w200x+8600k0,所以当x0时,总运费最低也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义