《河南省襄城县春联考2022-2023学年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河南省襄城县春联考2022-2023学年中考联考数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.56.5组别的频率是( )A0.1B0.2C0.3D0.42计算6m6(-2m2)3的结果为()ABCD3下列
2、运算正确的是()Ax2x3x6Bx2+x22x4C(2x)24x2D( a+b)2a2+b24如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )ABCD5下列说法中,正确的是()A不可能事件发生的概率为0B随机事件发生的概率为C概率很小的事件不可能发生D投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次6在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A中位数是9B众数为16C平均分为7.78D方差为27在RtABC中,C=90,AC=1,BC=3,则A的正切值为()A3BCD8点A(m4,12m)在第四象限
3、,则m的取值范围是 ()AmBm4Cm4Dm49在ABC中,若=0,则C的度数是( )A45B60C75D10510下列四个多项式,能因式分解的是()Aa1Ba21Cx24yDx26x9二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,E是AD边的中点,垂足为点F,连接DF,分析下列四个结论:;其中正确的结论有_12对于实数,我们用符号表示两数中较小的数,如.因此, _;若,则_13因式分解:x34x=_14和平中学自行车停车棚顶部的剖面如图所示,已知AB16m,半径OA10m,高度CD为_m15已知是一元二次方程的一个根,则方程的另一个根是_164的平方根是 三
4、、解答题(共8题,共72分)17(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)18(8分)如图1,已知DAC=90,ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60得到线段C
5、Q,连结QB并延长交直线AD于点E(1)如图1,猜想QEP= ;(2)如图2,3,若当DAC是锐角或钝角时,其它条件不变,猜想QEP的度数,选取一种情况加以证明;(3)如图3,若DAC=135,ACP=15,且AC=4,求BQ的长19(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,
6、有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 20(8分)某商场购进甲、乙两种商品,甲种商品共用了2
7、000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?21(8分)先化简,再求值(2x+3)(2x3)4x(x1)+(x2)2,其中x=22(10分)计算:12+(3.14)0|1|23(12分)(1)计算:
8、()3()34cos30+;(2)解方程:x(x4)=2x824如图,BD是ABC的角平分线,点E,F分别在BC,AB上,且DEAB,BEAF(1)求证:四边形ADEF是平行四边形;(2)若ABC60,BD6,求DE的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】在5.56.5组别的频数是8,总数是40,=0.1故选B2、D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案详解:原式=, 故选D点睛:本题主要考查的是幂的计算法则,属于基础题型明白幂的计算法则是解决这个问题的关键3、C【解析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、
9、完全平方公式逐一进行计算即可【详解】A、x2x3x5,故A选项错误;B、x2+x22x2,故B选项错误;C、(2x)24x2,故C选项正确;D、( a+b)2a2+2ab+b2,故D选项错误,故选C【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键4、D【解析】过O作直线OEAB,交CD于F,由CD/AB可得OABOCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OEAB,交CD于F,AB/CD,OFCD,OE=12,OF=2,OABOCD,OE、OF分别是OAB和OCD的高,即,解得:CD=1.故
10、选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.5、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A考点:随机事件6、A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1故选A【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练
11、掌握基本知识,属于中考常考题型7、A【解析】【分析】根据锐角三角函数的定义求出即可【详解】在RtABC中,C=90,AC=1,BC=3,A的正切值为=3,故选A【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键8、B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可【详解】解:点A(m-1,1-2m)在第四象限, 解不等式得,m1,解不等式得,m所以,不等式组的解集是m1,即m的取值范围是m1故选B【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+
12、);第二象限(-,+);第三象限(-,-);第四象限(+,-)9、C【解析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数【详解】由题意,得cosA=,tanB=1,A=60,B=45,C=180-A-B=180-60-45=75故选C10、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可试题解析:x2-6x+9=(x-3)2故选D考点:2因式分解-运用公式法;2因式分解-提公因式法二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】证明EAC=ACB,ABC=AFE=90即可;由ADBC,推出AEFC
13、BF,得到,由AE=AD=BC,得到,即CF=2AF;作DMEB交BC于M,交AC于N,证明DM垂直平分CF,即可证明;设AE=a,AB=b,则AD=2a,根据BAEADC,得到,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N,四边形ABCD是矩形,ADBC,ABC=90,AD=BC,BEAC于点F,EAC=ACB,ABC=AFE=90,AEFCAB,故正确;ADBC,AEFCBF,AE=AD=BC,即CF=2AF, CF=2AF,故正确;作DMEB交BC于M,交AC于N,DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NF,BEAC于点
14、F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,即b=a,tanCAD=,故错误;故答案为:【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键12、 2或-1 【解析】,min,=;min(x1)2,x2=1,当x0.5时,(x1)2=1,x1=1,x1=1,x1=1,解得:x1=2,x2=0(不合题意,舍去),当x0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=1,13、x(x+2)(x2)【解析】试题分析:首先提取公因式x
15、,进而利用平方差公式分解因式即x34x=x(x24)=x(x+2)(x2)故答案为x(x+2)(x2)考点:提公因式法与公式法的综合运用14、1【解析】由CDAB,根据垂径定理得到ADDB8,再在RtOAD中,利用勾股定理计算出OD,则通过CDOCOD求出CD【详解】解:CDAB,AB16,ADDB8,在RtOAD中,AB16m,半径OA10m,OD6,CDOCOD1061(m)故答案为1【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧也考查了切线的性质定理以及勾股定理15、【解析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2
16、-代入计算即可【详解】设方程的另一根为x1,又x=2-,由根与系数关系,得x1+2-=4,解得x1=2+故答案为:【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解16、1【解析】试题分析:,4的平方根是1故答案为1考点:平方根三、解答题(共8题,共72分)17、(1);(2);(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺
17、利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小明在第一题使用“求助”【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.18、(1)QEP=60;(2)QEP=60,证明详见解析;(3)【解析】(1)如图1,先根据旋转的性质和等边三角形的性质得出PCA=QCB,进而可利用
18、SAS证明CQBCPA,进而得CQB=CPA,再在PEM和CQM中利用三角形的内角和定理即可求得QEP=QCP,从而完成猜想;(2)以DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明ACPBCQ,可得APC=Q,进一步即可证得结论;(3)仿(2)可证明ACPBCQ,于是AP=BQ,再求出AP的长即可,作CHAD于H,如图3,易证APC=30,ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)QEP=60;证明:连接PQ,如图1,由题意得:PC=CQ,且PCQ=60,ABC是等边三角形,ACB=60,PCA=QCB,则在CPA和CQB
19、中, ,CQBCPA(SAS),CQB=CPA,又因为PEM和CQM中,EMP=CMQ,QEP=QCP=60.故答案为60; (2)QEP=60.以DAC是锐角为例.证明:如图2,ABC是等边三角形,AC=BC,ACB=60,线段CP绕点C顺时针旋转60得到线段CQ,CP=CQ,PCQ=60,ACB+BCP=BCP+PCQ,即ACP=BCQ,在ACP和BCQ中, ,ACPBCQ(SAS),APC=Q,1=2,QEP=PCQ=60; (3)连结CQ,作CHAD于H,如图3,与(2)一样可证明ACPBCQ,AP=BQ,DAC=135,ACP=15,APC=30,CAH=45,ACH为等腰直角三角形
20、,AH=CH=AC=4=,在RtPHC中,PH=CH=,PA=PHAH=,BQ=.【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.19、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E,CFOD交x轴于F求出OE、OF、CF、OD、BE即可解决问题;如图2-2中,作BEOD交OA于E,作PMOD交OA于M
21、利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1,),故答案为(2,0),(1,),(1,);如图22中,作BEOD交OA于E,作PMOD交OA于M,ODBE,ODPM,
22、BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120,OMy轴,MOA=30,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120,MKO=60,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当EN=1时,ME=+1,观察图象可知当M的半径r的取值范围为1r+1故答案为:1r+1【点睛】本题考查圆综合题、平行线分线段
23、成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题20、 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件【解析】【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,根
24、据题意得,解得,经检验,是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为,设甲种商品按原销售单价销售a件,则,解得,答:甲种商品按原销售单价至少销售20件【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.21、解:原式=4x294x2+4x+x24x+4 =x21当x=时,原式=()21=31=2【解析】应用整式的混合运算法则进行化简,最后代入x值求值22、1.【解析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案【详解】解:原式=1+41(1)=1
25、+41+1=1【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.23、(1)3;(1)x1=4,x1=1【解析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8()4+1=81+1=3;(1)移项得:x(x4)1(x4)=0,(x4)(x1)=0,x4=0,x1=0,x1=4,x1=1【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.24、(1)证明见解析;(2).【解析】(1)由BD是ABC的角平分线,DEAB,可证得BDE是等腰
26、三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EHBD于点H,由ABC=60,BD是ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案【详解】(1)证明:BD是ABC的角平分线,ABD=DBE,DEAB,ABD=BDE,DBE=BDE,BE=DE;BE=AF,AF=DE;四边形ADEF是平行四边形;(2)解:过点E作EHBD于点HABC=60,BD是ABC的平分线,ABD=EBD=30,DH=BD=6=3,BE=DE,BH=DH=3,BE=,DE=BE=【点睛】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识注意掌握辅助线的作法