《江西省抚州市临川第二中学2023年高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省抚州市临川第二中学2023年高三第四次模拟考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列满足,(),则数列的通项公式( )ABCD2设曲线在点处的切线方程为,则( )A1B2C3D43函数图像可能是( )ABCD4如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为( )ABCD5若实数x,y满足条件,目标函数,则z 的最大值为()AB1C2D06已知P是双曲线渐近线上一点,是双曲线的左、右焦点,记,PO,的斜率为,k,若,-2k,成等差数列,则此双曲线的离心率为( )ABCD7已知点(m,8)在幂函数的图象上,设,则( )AbacBab
3、cCbcaDacb8中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是( )A2或B2或C或D或9下列说法正确的是( )A“若,则”的否命题是“若,则”B“若,则”的逆命题为真命题C,使成立D“若,则”是真命题10正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )ABCD11已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( )ABCD12在的展开式中,的系数为( )A-120B120C-15D15二、填空题:本题共4小题,每小题5分,共20分。13将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子
4、里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有_种不同的放法.14在平行四边形中,已知,若,则_15如图,在直四棱柱中,底面是平行四边形,点是棱的中点,点是棱靠近的三等分点,且三棱锥的体积为2,则四棱柱的体积为_16农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为_;若该六面体内有一球,则该
5、球体积的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图, 在四棱锥中, 底面, , ,点为棱的中点.(1)证明:(2)求直线与平面所成角的正弦值;(3)若为棱上一点, 满足, 求二面角的余弦值.18(12分)已知函数(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,且,若不等式恒成立,试求实数m的取值范围19(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1
6、)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;平均车速超过的人数平均车速不超过的人数合计男性驾驶员女性驾驶员合计(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.参考公式:其中临界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82820(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明
7、口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.21(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.22(10分)在直角坐标系中,长为3的线段的两端点分别在轴、轴上滑动,点为线段上
8、的点,且满足.记点的轨迹为曲线.(1)求曲线的方程;(2)若点为曲线上的两个动点,记,判断是否存在常数使得点到直线的距离为定值?若存在,求出常数的值和这个定值;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用数列的递推关系式,通过累加法求解即可【详解】数列满足:,可得以上各式相加可得:,故选:【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力2、D【解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:
9、D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题3、D【解析】先判断函数的奇偶性可排除选项A,C,当时,可分析函数值为正,即可判断选项.【详解】,即函数为偶函数,故排除选项A,C,当正数越来越小,趋近于0时,所以函数,故排除选项B,故选:D【点睛】本题主要考查了函数的奇偶性,识别函数的图象,属于中档题.4、D【解析】根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于
10、基础题.5、C【解析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为 故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.6、B【解析】求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,再由等差数列中项性质和离心率公式,计算可得所求值【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,则,由,成等差数列,可得,化为,即,可得,故选:
11、【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平7、B【解析】先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【详解】由幂函数的定义可知,m11,m2,点(2,8)在幂函数f(x)xn上,2n8,n3,幂函数解析式为f(x)x3,在R上单调递增,1ln3,n3,abc,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.8、A【解析】根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x
12、、y轴上两种情况讨论,进而求得双曲线的离心率【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得: ,得双曲线的一条渐近线的方程为 焦点在x、y轴上两种情况讨论:当焦点在x轴上时有: 当焦点在y轴上时有: 求得双曲线的离心率 2或故选:A【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想解题的关键是:由圆的切线求得直线 的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值此题易忽视两解得出错误答案9、D【解析】选项A,否命题为“若,则”,故A不正确选项B,逆命题为“若,则”,为假命题,故B不正确选项C,由题意知对,都
13、有,故C不正确选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确选D10、C【解析】如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【详解】如图所示:在平面的投影为正方形的中心,故球心在上,故,设球半径为,则,解得,故.故选:.【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.11、B【解析】根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】双曲线与的渐近线相同,且焦点在轴上,可设双曲线的方程为,一个焦点为,故的标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求
14、解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.12、C【解析】写出展开式的通项公式,令,即,则可求系数【详解】的展开式的通项公式为,令,即时,系数为故选C【点睛】本题考查二项式展开的通项公式,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】讨论装球盒子的个数,计算得到答案.【详解】当四个盒子有球时:种;当三个盒子有球时:种;当两个盒子有球时:种.故共有种,故答案为:.【点睛】本题考查了排列组合的综合应用,意在考查学生的理解能力和应用能力.14、【解析】设,则,得到,利用向量的数量积的运算,即可求解【详解】由题意,如图所示,设,则,又由,所以为的中点
15、,为的三等分点,则,所以【点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题15、12【解析】由题意,设底面平行四边形的,且边上的高为,直四棱柱的高为,分别表示出直四棱柱的体积和三棱锥的体积,即可求解。【详解】由题意,设底面平行四边形的,且边上的高为,直四棱柱的高为,则直四棱柱的体积为,又由三棱锥的体积为,解得,即直四棱柱的体积为。【点睛】本题主要考查了棱柱与棱锥的体积的计算问题,其中解答中正确认识几何体的结构特征,合理、恰当地表示直四棱柱三棱锥的体
16、积是解答本题的关键,着重考查了推理与运算能力,以及空间想象能力,属于中档试题。16、 【解析】(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【详解】(1)每个三角形面积是,由对称性可知该六面是由两个正四面合成的,可求出该四面体的高为,故四面体体积为,因此该六面体体积是正四面体的2倍, 所以六面体体积是;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶
17、点,把六面体分成了六个三棱锥设球的半径为,所以, 所以球的体积.故答案为:;.【点睛】本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析 (2) (3)【解析】(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由
18、空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:底面,以为坐标原点,建立如图所示的空间直角坐标系,点为棱 的中点,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知 所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线
19、线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.18、(1);(2)【解析】(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,不等式恒成立,等价于恒成立,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1)由题可知,联立可得(2)当时,有两个极值点,且,是方程的两个正根,不等式恒成立,即恒成立,由,得,令,在上是减函数,故【点睛】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.19
20、、(1)填表见解析;有的把握认为,平均车速超过与性别有关(2)详见解析【解析】(1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为,平均车速超过与性别有关.(2)利用二项分布的知识计算出分布列和数学期望.【详解】(1)平均车速超过的人数平均车速不超过的人数合计男性驾驶员301040女性驾驶员51520合计352560因为,所以有的把握认为,平均车速超过与性别有关.(2)服从,即,.所以的分布列如下0123的期望【点睛】本小题主要考查列联表独立性检验,考查二项分布分布列和数学期望,属于中档题.20、(1)分布见解析,期望为;(2).【解析】(1)先明确X的可能取值,分别求解其概率
21、,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60203401010,所以【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.21、 (1);(2)见解析【解析】(1)将转化为对任意恒成立,令,故只需,即可求出的值; (
22、2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出【详解】函数的定义域为,因为对任意恒成立,即对任意恒成立,令,则,当时,故在上单调递增,又,所以当时,不符合题意;当时,令得,当时,;当时,所以在上单调递增,在上单调递减,所以,所以要使在时恒成立,则只需,即,令,所以,当时,;当时,所以在 单调递减,在上单调递增,所以,即,又,所以,故满足条件的的值只有(2)由(1)知,所以,令,则,当,时,即在上单调递增;又,所以,使得,当时,;当时,即在上单调递减,在上单调递增,且所以, 即,所以,即【点睛】本题主要考查利用导数法求函数的最值及恒成立问题处理
23、方法,第(2)问通过最值问题深化对函数的单调性的考查,同时考查转化与化归的思想,属于中档题22、(1)(2)存在;常数,定值【解析】(1)设出的坐标,利用以及,求得曲线的方程.(2)当直线的斜率存在时,设出直线的方程,求得到直线的距离.联立直线的方程和曲线的方程,写出根与系数关系,结合以及为定值,求得的值.当直线的斜率不存在时,验证.由此得到存在常数,且定值.【详解】(1)解析:(1)设,由题可得,解得又,即,消去得:(2)当直线的斜率存在时,设直线的方程为设,由可得:由点到的距离为定值可得(为常数)即得:即,又为定值时,此时,且符合当直线的斜率不存在时,设直线方程为由题可得,时,经检验,符合条件综上可知,存在常数,且定值【点睛】本小题主要考查轨迹方程的求法,考查直线和椭圆的位置关系,考查运算求解能力,考查椭圆中的定值问题,属于难题.