《江苏省重点中学2023届高三下学期第五次调研考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省重点中学2023届高三下学期第五次调研考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知幂函数的图象过点,且,则,的大小关系为( )ABCD2已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为( )ABCD3已知向量,则向量与的夹角为( )ABCD4设a,
2、b,c为正数,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不修要条件5已知集合为自然数集,则下列表示不正确的是( )ABCD6执行如图所示的程序框图,则输出的的值为( ) ABCD7是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )ABCD8要得到函数的图象,只需将函数的图象上所有点的( )A横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度9下列几何体的三视图中,
3、恰好有两个视图相同的几何体是( )A正方体B球体C圆锥D长宽高互不相等的长方体10中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、为顶点的多边形为正五边形,且,则( )ABCD11已知集合,若,则实数的值可以为( )ABCD12已知随机变量服从正态分布,且,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在面积为的中,若点是的中点,点满足,则的最大值是_.14某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),
4、则成绩在250,400)内的学生共有_人15给出下列等式:,请从中归纳出第个等式:_.16已知全集,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴已知曲线的极坐标方程为,是上一动点,点的轨迹为(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程18(12分)2018年反映社会现实的电影我不是药神引起了很大的轰动,治疗特种病的创新药研发成了当务之急为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销
5、量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测第一次检测时,三类剂型,合格的概率分别为,第二次检测时,三类剂型,合格的概率分别为,两次检测过程相互独立,设经过两次检测后,三类剂型合格的种类数为,求的数学期望附:(1)相关系数(2),19(12分)已知,且.(1)求的最小值;(2)证明:.20(12分)已知椭圆的
6、焦距为2,且过点(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,()证明:平分线段(其中为坐标原点);()当取最小值时,求点的坐标21(12分)已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.22(10分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,
7、年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意求得参数,根据对数的
8、运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.2、B【解析】利用复数的除法运算化简z, 复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.3、C【解析】求出,进而可求,即能求出向量夹角.【详解】解:由题意知,. 则 所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标
9、表示.求向量夹角时,通常代入公式 进行计算.4、B【解析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可【详解】解:,为正数,当,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键5、D【解析】集合为自然数集,由此能求出结果【详解】解:集合为自然数集,在A中,正确;在B中,正确;在C中,正确;在D中,不是的子集,故D错误故选:D【点睛】本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题6、B【解析】
10、列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,执行第一次循环时:,所以:不成立继续进行循环,当,时,成立,由于不成立,执行下一次循环,成立,成立,输出的的值为.故选:B【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型7、D【解析】根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的
11、特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.8、C【解析】根据三角函数图像的变换与参数之间的关系,即可容易求得.【详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将 向左平移个单位长度,故可得.故选:C.【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.9、C【解析】根据基本几何体的三视图确定【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形故选:C【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关
12、键10、A【解析】利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题11、D【解析】由题意可得,根据,即可得出,从而求出结果【详解】,且, 的值可以为 故选:D【点睛】考查描述法表示集合的定义,以及并集的定义及运算12、C【解析】根据在关于对称的区间上概率相等的性质求解【详解】,故选:C【点睛】本题考查正态分布的应用掌握正态曲线的性质是解题基础随机变量服从正态分布,则二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由任
13、意三角形面积公式与构建关系表示|AB|AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【详解】由ABC的面积为得|AB|AC|sinBAC=,所以|AB|AC|sinBAC=,又,即|AB|AC|cosBAC=,由与的平方和得:|AB|AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.14、750【解析】因为,得,所以。15、【解析】通过已知的三个等式,找出规律,归纳出第个等式即可【详解】解:因为:,等式的右边系数是2,且角是
14、等比数列,公比为,则角满足:第个等式中的角,所以;故答案为:【点睛】本题主要考查归纳推理,注意已知表达式的特征是解题的关键,属于中档题16、【解析】利用集合的补集运算即可求解.【详解】由全集,所以.故答案为:【点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(
15、1)设点极坐标分别为,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.【点睛】本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系18、(1)0.98;可用线性回归模型拟合(2)【解析】(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,三类剂型合格的种类数为,服从
16、二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,由公式,与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,由题意, ,.【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.19、(1)(2)证明见解析【解析】(1)利用基本不等式即可求得最小值;(2)关键是配凑系数,进而利用基本不等式得证【详解】(1),当且仅当“”时取等号,故的最小值为;(2),当且仅当时取等号,此时故【点睛】本题主要考查基本不等式的运用,属于基础题20、(1)(2)()见解析()点的坐标为【解析】(1)由题意得,再由的关系求出,即可得椭圆的标准方程;(2)(i
17、)设,的中点为,设直线的方程为,代入椭圆方程中,运用根与系数的关系和中点坐标公式,结合三点共线的方法:斜率相等,即可得证;(ii)利用两点间的距离公式及弦长公式将表示出来,由换元法的对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点的坐标.【详解】解:(1)由题意得, ,所以,所以椭圆方程为(2)设, 的中点为,()证明:由,可设直线的方程为,代入椭圆方程,得,所以,所以,则直线的斜率为,因为,所以,所以三点共线,所以平分线段;(ii)由两点间的距离公式得由弦长公式得 所以,令,则,由在上递增,可得,即时,取得最小值4,所以当取最小值时,点的坐标为【点睛】此题考那可是椭圆方程和性质
18、,主要考查椭圆方程的运用,运用根与系数的关系和中点坐标公式,同时考查弦长公式,属于较难题.21、 (1) .(2) 为定值.过程见解析.【解析】分析:(1)焦距说明,用点差法可得.这样可解得,得椭圆方程;(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.详解:(1)由题意可知,设,代入椭圆可得:,两式相减并整理可得,即. 又因为,代入上式可得,.又,所以, 故椭圆的方程为. (2)由题意可知,当为长轴时,为短半轴,此时; 否则,可设直线的方程为,联立,消可得, 则有
19、:, 所以设直线方程为,联立,根据对称性,不妨得,所以. 故,综上所述,为定值. 点睛:设直线与椭圆相交于两点,的中点为,则有,证明方法是点差法:即把点坐标代入椭圆方程得,两式相减,结合斜率公式可得.22、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.