《河南省三门峡灵宝市重点中学2023届中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《河南省三门峡灵宝市重点中学2023届中考考前最后一卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1把不等式组的解集表示在数轴上,正确的是()ABCD2如图,点M为ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与ABCD的另一边交于点N当点M从AB匀
2、速运动时,设点M的运动时间为t,AMN的面积为S,能大致反映S与t函数关系的图象是()ABCD3某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为( )A6,5B6,6C5,5D5,64若点A(1+m,1n)与点B(3,2)关于y轴对称,则m+n的值是()A5 B3 C3 D15如图,在ABC中,C=90,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,MPQ的面积大小变化情况是(
3、 )A一直增大B一直减小C先减小后增大D先增大后减小6已知常数k0,b0,则函数y=kx+b,的图象大致是下图中的()ABCD7下列说法正确的是( )A“明天降雨的概率是60%”表示明天有60%的时间都在降雨B“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近8小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后
4、每一页写的数均为他在前一页写的数加1若小昱在某页写的数为101,则阿帆在该页写的数为何?()A350B351C356D3589某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )ABCD10如图所示的几何体的左视图是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,直线ab,P=75,2=30,则1=_12估计无理数在连续整数_与_之间13如图,边长为6的菱形ABCD中,AC是其对角线,B=60,点P在CD上,CP=2,点M在AD上,点N在AC上,则PMN的周长的最小值为_ 14在ABC中,AB=AC,BDAC于D,BE平分ABD交AC于E,sinA=,BC=,则 A
5、E=_.15如图,函数y=(x0)的图像与直线y=-x交于A点,将线段OA绕O点顺时针旋转30,交函数y=(x0)的图像于B点,得到线段OB,若线段AB=3-,则k= _.16将一张长方形纸片折叠成如图所示的形状,若DBC=56,则1=_17如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_三、解答题(共7小题,满分69分)18(10分)在等腰RtABC中,ACB=90,AC=BC,点D是边BC上任意一点,连接AD,过点C作CEAD于点E(1)如图1,若BAD=15,且CE=1,求线段BD的长;(2)如图2,过点C作CFCE,且CF=CE,连接FE并延长交AB于点M,连接BF,求
6、证:AM=BM19(5分)20(8分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作ABx轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P求反比例函数y=的表达式;求点B的坐标;求OAP的面积21(10分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长22(10分)阅读下面材料,并解答问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式解:由分母为x2+1,可设x4x2+3=(x2+1)(x2+a)+b则x4x2+3=(x2+1)(x2+a)+b=x4ax2+x2+a+b
7、=x4(a1)x2+(a+b)对应任意x,上述等式均成立,a=2,b=1=+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式试说明的最小值为123(12分)我们把两条中线互相垂直的三角形称为“中垂三角形”例如图1,图2,图1中,AF,BE是ABC的中线,AFBE,垂足为P,像ABC这样的三角形均为“中垂三角形”设BCa,ACb,ABc特例探索(1)如图1,当ABE45,c时,a ,b ;如图2,当ABE10,c4时,a ,b ;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来
8、,请利用图1证明你发现的关系式;拓展应用(1)如图4,在ABCD中,点E,F,G分别是AD,BC,CD的中点,BEEG,AD,AB1求AF的长24(14分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使CAD=30,CBD=60(1)求AB的长(精确到0.1米,参考数据:);(2)已知本路段对校车限速为40千米小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由参考答案一、选择题(每小题只有一个
9、正确答案,每小题3分,满分30分)1、B【解析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可【详解】解:由x20,得x2,由x+10,得x1,所以不等式组无解,故选B【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了2、C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式详解:假设当A=45时,AD=2,AB=4,则MN=t,当0t2时,AM=MN=t,则S=,为二次函数;当2t4时,S=t,为一次函数,故选C点睛:本题主要考查的就是函数图像的实际应用问题,属于中等
10、难度题型解答这个问题的关键就是得出函数关系式3、A【解析】根据众数、中位数的定义分别进行解答即可【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选A【点睛】本题考查了众数和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数4、D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出
11、m、n的值,代入计算可得【详解】点A(1+m,1n)与点B(3,2)关于y轴对称,1+m=3、1n=2,解得:m=2、n=1,所以m+n=21=1,故选D【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.5、C【解析】如图所示,连接CM,M是AB的中点,SACM=SBCM=SABC,开始时,SMPQ=SACM=SABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,SMPQ=SABC;结束时,SMPQ=SBCM=SABCMPQ的面积大小变化情况是:先减小后增大故选C6、D【解析】当k0,b0
12、时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项【详解】 解:当k0,b0时,直线与y轴交于正半轴,且y随x的增大而减小,直线经过一、二、四象限,双曲线在二、四象限故选D【点睛】本题考查了一次函数、反比例函数的图象与性质关键是明确系数与图象的位置的联系7、D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖
13、故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键8、B【解析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,101,;阿帆所写的数为 1,8,15,22,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为
14、1+(51-1)1=1+501=1+350=2故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键9、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】,故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、A【解析】本题考查的是三视图左视图可以看到图形的排和每排上最多有几层所以选择A二、填空题(共7小题,每小题3分,满分21分)11、45【解析】过P作PM直线a,根据平行
15、线的性质,由直线ab,可得直线abPM,然后根据平行线的性质,由P=75,2=30,可得1=P-2=45.故答案为45.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等12、3 4 【解析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】解:,无理数在连续整数3与4之间【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.13、2【解析】过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三
16、角形函数值求得,再根据线段相加勾股定理即可求解.【详解】过P作关于AC和AD的对称点,连接和,过P作,四边形ABCD是菱形,AD是对角线,,又由题意得【点睛】本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.14、5【解析】BDAC于D,ADB=90,sinA=.设BD=,则AB=AC=,在RtABD中,由勾股定理可得:AD=,CD=AC-AD=,在RtBDC中,BD2+CD2=BC2,解得(不合题意,舍去),AB=10,AD=8,BD=6,BE平分ABD,AE=5.点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到BDC中
17、,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.15、-3【解析】作ACx轴于C,BDx轴于D,AEBD于E点,设A点坐标为(3a,-a),则OC=-3a,AC=-a,利用勾股定理计算出OA=-2a,得到AOC=30,再根据旋转的性质得到OA=OB,BOD=60,易证得RtOACRtBOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,则ABE为等腰直角三角形,利用等腰直角三角形的性质得到3-=(-3a+a),求出
18、a=1,确定A点坐标为(3,-),然后把A(3,-)代入函数y=即可得到k的值【详解】作ACx轴与C,BDx轴于D,AEBD于E点,如图,点A在直线y=-x上,可设A点坐标为(3a,-a),在RtOAC中,OC=-3a,AC=-a,OA=-2a,AOC=30,直线OA绕O点顺时针旋转30得到OB,OA=OB,BOD=60,OBD=30,RtOACRtBOD,OD=AC=-a,BD=OC=-3a,四边形ACDE为矩形,AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,AE=BE,ABE为等腰直角三角形,AB=AE,即3-=(-3a+a),解得a=1,A点坐标为(3,-),而点A在函数y
19、=的图象上,k=3(-)=-3故答案为-3【点睛】本题是反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用勾股定理、旋转的性质以及等腰直角三角形的性质进行线段的转换与计算16、62【解析】根据折叠的性质得出2=ABD,利用平角的定义解答即可【详解】解:如图所示:由折叠可得:2=ABD,DBC=56,2+ABD+56=180,解得:2=62,AE/BC,1=2=62,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出2=ABD是关键17、a1【解析】根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a1,故答案为a1三、解
20、答题(共7小题,满分69分)18、 (1) 2 ;(2)见解析【解析】分析:(1)先求得:CAE=45-15=30,根据直角三角形30角的性质可得AC=2CE=2,再得ECD=90-60=30,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明ACEBCF,则BFC=AEC=90,证明C、M、B、F四点共圆,则BCM=MFB=45,由等腰三角形三线合一的性质可得AM=BM详解:(1)ACB=90,AC=BC,CAB=45,BAD=15,CAE=4515=30,RtACE中,CE=1,AC=2CE=2,RtCED中,ECD=9060=30,
21、CD=2ED,设ED=x,则CD=2x,CE=x,x=1,x=,CD=2x=,BD=BCCD=ACCD=2;(2)如图2,连接CM,ACB=ECF=90,ACE=BCF,AC=BC,CE=CF,ACEBCF,BFC=AEC=90,CFE=45,MFB=45,CFM=CBA=45,C、M、B、F四点共圆,BCM=MFB=45,ACM=BCM=45,AC=BC,AM=BM点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30角的性质和勾股定理,第二问有难度,构建辅助线,证明ACEBCF是关键19、5【解析】根据特殊角的三角函数值进行计算即可【详
22、解】原式=3+42=5【点睛】本题考查了特殊角的三角函数值,是基础题目比较简单20、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)OAP的面积=1【解析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由ABx轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作ACx轴于点C,则OC=4、AC=3,OA=1,ABx轴,且AB=OA=1,点B的坐标为(9,3);(3)点B坐标为(9,3
23、),OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PDx轴,延长DP交AB于点E,则点E坐标为(6,3),AE=2、PE=1、PD=2,则OAP的面积=(2+6)36221=1【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.21、(1)25;(2)CD1,CD27【解析】分析:(1)利用圆周角定理的推论得到C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)AB是O的直径,ACB=90,AB是O的直径,AC8
24、,BC1,AB10,O的面积5225(2)有两种情况:如图所示,当点D位于上半圆中点D1时,可知ABD1是等腰直角三角形,且OD1AB,作CEAB垂足为E,CFOD1垂足为F,可得矩形CEOF,CE,OF= CE=,=,,;如图所示,当点D位于下半圆中点D2时,同理可求.CD1,CD27点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.22、 (1) =x2+7+ (2) 见解析【解析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可【详解】(1)
25、设x46x+1=(x2+1)(x2+a)+b=x4+(1a)x2+a+b,可得 ,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+ x20,x2+77;当x=0时,取得最小值0,当x=0时,x2+7+最小值为1,即原式的最小值为123、(1)2,2;2,2;(2)+=5;(1)AF=2【解析】试题分析:(1)AFBE,ABE=25,AP=BP=AB=2,AF,BE是ABC的中线,EFAB,EF=AB=,PFE=PEF=25,PE=PF=1,在RtFPB和RtPEA中,AE=BF=,AC=BC=2,a=b=2,如图2,连接EF,同理可得:EF=2=2,EFAB,PEFA
26、BP,在RtABP中,AB=2,ABP=10,AP=2,PB=2,PF=1,PE=,在RtAPE和RtBPF中,AE=,BF=,a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设ABP=,AP=csin,PB=ccos,由(1)同理可得,PF=PA=,PE=,AE2=AP2+PE2=c2sin2+,BF2=PB2+PF2=+c2cos2,=c2sin2+,=+c2cos2,+=+c2cos2+c2sin2+,a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,点E、G分别是AD,CD的中点,EGAC,BE
27、EG,BEAC,四边形ABCD是平行四边形,ADBC,AD=BC=2,EAH=FCH,E,F分别是AD,BC的中点,AE=AD,BF=BC,AE=BF=CF=AD=,AEBF,四边形ABFE是平行四边形,EF=AB=1,AP=PF,在AEH和CFH中,AEHCFH,EH=FH,EQ,AH分别是AFE的中线,由(2)的结论得:AF2+EF2=5AE2,AF2=5EF2=16,AF=2考点:相似形综合题24、(1)24.2米(2) 超速,理由见解析【解析】(1)分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速【详解】解:(1)由題意得,在RtADC中,在RtBDC中,AB=ADBD=(米)(2)汽车从A到B用时2秒,速度为24.22=12.1(米/秒),12.1米/秒=43.56千米/小时,该车速度为43.56千米/小时43.56千米/小时大于40千米/小时,此校车在AB路段超速