《江西省抚州市乐安县2022-2023学年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省抚州市乐安县2022-2023学年中考数学押题试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下面几何的主视图是( )ABCD2一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )ABCD3古希腊著名的毕达哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+314使用家用燃气灶烧开同一壶水所需的燃气量(单
3、位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD5在下列四个标志中,既是中心对称又是轴对称图形的是()ABCD6如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,且AB=10,BC=15,MN=3,则AC的长是()A12B14 C16D187如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:ab0;ab;sin=;不等式kxax2+bx的解
4、集是0x1其中正确的是()ABCD8如图,ABCD,DECE,1=34,则DCE的度数为()A34B56C66D549如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C20D2210PM2.5是指大气中直径0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A2.5107B2.5106C25107D0.2510511甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环)67868乙命中的环数(环)510767根据以上数据,下列说法正确的是( )A甲的平均成绩大于
5、乙B甲、乙成绩的中位数不同C甲、乙成绩的众数相同D甲的成绩更稳定12在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A众数是5B中位数是5C平均数是6D方差是3.6二、填空题:(本大题共6个小题,每小题4分,共24分)13按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为214.该返回舱的最高温度为_14如图,已知矩形ABCD中,点E是BC边上的点,BE2,EC1,AEBC,DFAE,垂足为F则下列结论:ADFEAB;AFBE;DF平分ADC;sinCDF其中正确的结论是_(把正确结论的序号都填上)15如图
6、,在平面直角坐标系中,函数y=(k0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC若三角形ABC的面积为3,则点B的坐标为_16如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_米.17若x=1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_18若关于x的方程=0有增根,则m的值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB是O的直径,AC是O的切线,BC与O相交于点D,点E在O上,且DE=DA,AE与BC交于点F(1)求证:
7、FD=CD;(2)若AE=8,tanE=,求O的半径20(6分)先化简,然后从2x2的范围内选取一个合适的整数作为x的值代入求值.21(6分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶
8、共约多少盒?22(8分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本) 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润若每份套餐售价不超过10元试写出与的函数关系式;若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由23(8分)如图,
9、在平面直角坐标系中,二次函数y=(x-a)(x-3)(0a3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CPx轴,垂足为点P,连接AD、BC(1)求点A、B、D的坐标;(2)若AOD与BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.24(10分)如图,已知A=B,AE=BE,点D在AC边上,1=2,AE与BD相交于点O求证:EC=ED25(10分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60求ABC的度数;求证:AE是O的切线;当BC=4时,求劣弧AC的长26(12分)如图,直线l
10、是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC(1)设ONP,求AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明27(12分)小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质下面是小张同学在研究过程中遇到的几个问题,现由你来完成:(1)函数y=自变量的取值范围是 ;(2)下表列出了y与x的几组对应值:x2m12y1441表中m的值是 ;(3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=的图象
11、,写出这个函数的性质: (只需写一个)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】主视图是从物体正面看所得到的图形【详解】解:从几何体正面看故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图2、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.3、C【解析】本题考查探究、归纳的数学思想方法题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1
12、)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的4、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36和54之间,约为41时,
13、燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点5、C【解析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折
14、叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、C【解析】延长线段BN交AC于E.AN平分BAC,BAN=EAN.在ABN与AEN中,BAN=EAN,AN=AN,ANB=ANE=90,ABNAEN(ASA),AE=AB=10,BN=NE.又M是ABC的边BC的中点,CE=2MN=23=6,AC=AE+CE=10+6=16.故选C.7、B【解析】根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入,不等式kxax2+bx的解集可以转化为函数图象的高低关系【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a0,b0,则错误将A(1,2)代
15、入y=ax2+bx,则2=9a+1bb=,ab=a()=4a-,故正确;由正弦定义sin=,则正确;不等式kxax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x1或x0,则错误故答案为:B【点睛】二次函数的图像,sin公式,不等式的解集8、B【解析】试题分析:ABCD,D=1=34,DECE,DEC=90,DCE=1809034=56故选B考点:平行线的性质9、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形ABCD是平行四边形,AO=CO,BO=DO,DC=AB=6,AC+
16、BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解10、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000 0025=2.5106;故选B【点睛】本题考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定11、D【解析】根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可【详解】把甲命中的环数按大小顺序
17、排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:(环),乙命中的环数的平均数为:(环),甲的平均数等于乙的平均数,故选项A错误;甲的方差=(67)2+(77)2+(87)2+(67)2+(87)2=0.8;乙的方差=(57)2+(107)2+(77)2+(67)2+(77)2=2.8,因为2.80.8,所以甲的稳定性大,故选项D正确.故选D.【点睛】本题考查方差的意义方差是用来衡量一组
18、数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定同时还考查了众数的中位数的求法.12、D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)5=6,此选项正确;D、方差为(76)2+(56)22+(36)2+(106)2=5.6,此选项错误;故选:D【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解
19、答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大二、填空题:(本大题共6个小题,每小题4分,共24分)13、17【解析】根据返回舱的温度为214,可知最高温度为21+4;最低温度为21-4【详解】解:返回舱的最高温度为:21+4=25;返回舱的最低温度为:21-4=17;故答案为:17【点睛】本题考查正数和负数的意义4指的是比21高于4或低于414、【解析】只要证明EABADF,CDF=AEB,利用勾股定理求出AB即可解决问题【详解】四边形ABCD是矩形,AD=BC,ADBC,B=90,BE=2,EC=1,AE=AD=BC=3,AB=,ADBC,DAF=AEB,DFAE,AFD
20、=B=90,EABADF,AF=BE=2,DF=AB=,故正确,不妨设DF平分ADC,则ADF是等腰直角三角形,这个显然不可能,故错误,DAF+ADF=90,CDF+ADF=90,DAF=CDF,CDF=AEB,sinCDF=sinAEB=,故错误,故答案为【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型15、(4,)【解析】由于函数y=(x0常数k0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公
21、式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标【详解】函数y=(x0、常数k0)的图象经过点A(1,1),把(1,1)代入解析式得到1=,k=1,设B点的横坐标是m,则AC边上的高是(m-1),AC=1根据三角形的面积公式得到1(m-1)=3,m=4,把m=4代入y=,B的纵坐标是,点B的坐标是(4,)故答案为(4,)【点睛】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度根据三角形的面积公式即可解答16、1【解析】根据题意,画出示意图,易得:RtEDCRtFDC,进而可得;即DC2=ED?FD,代入数据可得答案【详解】根据题意
22、,作EFC,树高为CD,且ECF=90,ED=3,FD=12,易得:RtEDCRtDCF,有,即DC2=EDFD,代入数据可得DC2=31,DC=1,故答案为117、1【解析】试题分析:将x=1代入方程得:13+m+1=0,解得:m=1考点:一元二次方程的解18、2【解析】去分母得,m-1-x=0.方程有增根,x=1, m-1-1=0, m=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2);【解析】(1)先利用切线的性质得出CAD+BAD=90,再利用直径所对的圆周角是直角得出B+BAD=90,从而可证明B=EAD,进而得出EA
23、D=CAD,进而判断出ADFADC,即可得出结论;(2)过点D作DGAE,垂足为G依据等腰三角形的性质可得到EG=AG=1,然后在RtGEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在RtABD中,依据锐角三角函数的定义可求得AB的长,从而可求得O的半径的长【详解】(1)AC 是O 的切线,BAAC,CAD+BAD=90,AB 是O 的直径,ADB=90,B+BAD=90,CAD=B,DA=DE,EAD=E,又B=E,B=EAD,EAD=CAD,在ADF和ADC中,ADF=ADC=90,AD=AD,FAD=CAD,ADFADC,FD=CD(2)如下图所
24、示:过点D作DGAE,垂足为GDE=AE,DGAE,EG=AG=AE=1tanE=,=,即=,解得DG=1ED=2B=E,tanE=,sinB=,即,解得AB=O的半径为【点睛】本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键20、,当x0时,原式(或:当x1时,原式).【解析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可【详解】解:原式=x满足1x1且为整数,若使分式有意义,x只能取0,1当x=0时,原式=(或:当x=1时,原式=)【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺
25、序和分式的化简化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式21、(1)150人;(2)补图见解析;(3)144;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有3020%150人;(2)C类别人数为150(30+45+15)60人,补全条形图如下:(3)扇形统计图中
26、C对应的中心角度数是360144故答案为144(4)600()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.22、(1)y=400x1(5x10);9元或10元;(2)能, 11元.【解析】(1)、根据利润=(售价进价)数量固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案【详解】解:(1)y=400(x5)2(5x10), 依题意得:400(x5)280
27、0, 解得:x8.5,5x10,且每份套餐的售价x(元)取整数, 每份套餐的售价应不低于9元 (2)依题意可知:每份套餐售价提高到10元以上时,y=(x5)40040(x10)2, 当y=1560时, (x5)40040(x10)2=1560,解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意故该套餐售价应定为11元【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型理解题意,列出关系式是解决这个问题的关键23、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.
28、【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:当AODBPC时,根据相似三角形性质得,解得:a= 3(舍去);AODCPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
29、【详解】(1)y=(x-a)(x-3)(0a3)与x轴交于点A、B(点A在点B的左侧),A(a,0),B(3,0),当x=0时,y=3a,D(0,3a);(2)A(a,0),B(3,0),D(0,3a).对称轴x=,AO=a,OD=3a,当x= 时,y=- ,C(,-),PB=3-=,PC=,当AODBPC时,即 ,解得:a= 3(舍去);AODCPB,即 ,解得:a1=3(舍),a2= .综上所述:a的值为;(3)能;连接BD,取BD中点M,D、B、O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,MC=MB, ,化简得:a4-14a2+45=0,(a2-5)(a2-9)=0,a
30、2=5或a2=9,a1=,a2=-,a3=3(舍),a4=-3(舍),0a3,a=,当a=时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.24、见解析【解析】由1=2,可得BED=AEC,根据利用ASA可判定BEDAEC,然后根据全等三角形的性质即可得证.【详解】解:1=2,1+AED=2+AED,即BED=AEC,在BED和AEC中,BEDAEC(ASA),ED=EC【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角
31、形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键25、(1)60;(2)证明略;(3)【解析】(1)根据ABC与D都是劣弧AC所对的圆周角,利用圆周角定理可证出ABC=D=60;(2)根据AB是O的直径,利用直径所对的圆周角是直角得到ACB=90,结合ABC=60求得BAC=30,从而推出BAE=90,即OAAE,可得AE是O的切线;(3)连结OC,证出OBC是等边三角形,算出BOC=60且O的半径等于4,可得劣弧AC所对的圆心角AOC=120,再由弧长公式加以计算,可得劣弧AC的长【详解】(1)ABC与D都是弧AC所对的圆周角,ABC=D=60; (2)AB是O的直径,ACB=9
32、0BAC=30,BAE=BAC+EAC=30+60=90,即BAAE,AE是O的切线;(3)如图,连接OC,OB=OC,ABC=60,OBC是等边三角形,OB=BC=4,BOC=60,AOC=120,劣弧AC的长为=【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.26、(1)45(2),理由见解析【解析】(1)由线段的垂直平分线的性质可得PMPN,POMN,由等腰三角形的性质可得PMNPNM,由正方形的性质可得APPN,APN90,可得APO,由三角形内角和定理可求AMN的度数;(2)由等腰直角三角形的性质和正方形的性质可得,MNCANB45,可证CBNMAN,可得【详
33、解】解:(1)如图,连接MP,直线l是线段MN的垂直平分线,PMPN,POMNPMNPNMMPONPO90,四边形ABNP是正方形APPN,APN90APMP,APO90(90)APMMPOAPO(90)902,APPM,AMNAMPPMN4545(2)理由如下:如图,连接AN,CN,直线l是线段MN的垂直平分线,CMCN,CMNCNM45,MCN90,四边形APNB是正方形ANBBAN45,MNCANB45ANMBNC又CBNMAN【点睛】本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键27、(1)x0;(2)1;(3)见解析;(4)图象关于y轴对称.【解析】(1)由分母不等于零可得答案;(2)求出y=1时x的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得【详解】(1)函数y=的定义域是x0,故答案为x0;(2)当y=1时,=1,解得:x=1或x=1,m=1,故答案为1;(3)如图所示:(4)图象关于y轴对称,故答案为图象关于y轴对称【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质