《江西南昌十所重点中学2022-2023学年高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西南昌十所重点中学2022-2023学年高三第二次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则的子集共有( )A个B个C个D个2已知等差数列满足,公差,且成等比数列,则A1B2C3D4
2、3已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( )ABCD4若复数满足(为虚数单位),则其共轭复数的虚部为( )ABCD5若时,则的取值范围为( )ABCD6已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D10957若,则下列结论正确的是( )ABCD8已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是( )ABCD9已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD10已知曲线且过定点,若且,则的最小值为( ).AB9C5D11已
3、知集合,若,则实数的值可以为( )ABCD12已知函数有三个不同的零点 (其中),则 的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某四棱锥的三视图如图所示,那么此四棱锥的体积为_.14已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为_15如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为_.16连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(
4、12分)如图,在三棱锥中,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.18(12分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点求椭圆的标准方程;若时,求实数;试问的值是否与的大小无关,并证明你的结论19(12分)如图,在直三棱柱ABCA1B1C1中,ABC90,ABAA1,M,N分别是AC,B1C1的中点求证:(1)MN平面ABB1A1;(2)ANA1B20(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若
5、数列既是“数列”又是“数列”,证明:数列是等比数列.21(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.()求椭圆的方程;()设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.22(10分)如图, 在四棱锥中, 底面, , ,点为棱的中点.(1)证明:(2)求直线与平面所成角的正弦值;(3)若为棱上一点, 满足, 求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详
6、解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.2、D【解析】先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.3、D【解析】先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公
7、式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.4、D【解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi1i,z ,所以共轭复数=-1+,虚部为1故选D【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题5、D【解析】由题得对恒成立,令,然后分别求出即可得的取值范围.【详解】由题得对恒成立,令,在单调递减,且,在上单调递增,在上单调递减,又在单调递增,的取值范围为.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.6、D
8、【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的7、D【解析】根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.
9、8、A【解析】先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题当时,没有零点,所以命题是假命题所以是真命题,是假命题,是假命题,是假命题故选:【点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象, 考查学生对这些知识的理解掌握水平.9、D【解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到
10、方程,即可求出参数的值;【详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.10、A【解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.11、D【解析】由题意可得,根据,即可得出,从而求出结果【详解】,且, 的值可以为 故选:D【点睛】考查描述法表示集合的定义,以及并集的定义及运算12、A【解析】令,构造,要使函数有三个
11、不同的零点(其中),则方程需要有两个不同的根,则,解得或,结合的图象,并分,两个情况分类讨论,可求出的值.【详解】令,构造,求导得,当时,;当时,故在上单调递增,在上单调递减,且时,时,可画出函数的图象(见下图),要使函数有三个不同的零点(其中),则方程需要有两个不同的根(其中),则,解得或,且,若,即,则,则,且,故,若,即,由于,故,故不符合题意,舍去. 故选A. 【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【详解】如图:此四棱锥的高为,底面是
12、长为,宽为2的矩形,所以体积.所以本题答案为.【点睛】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.14、【解析】由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.15、【解析】由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程.【详解】设圆锥的底面半径为,体积为,半球的体积为,
13、水(小圆锥)的体积为,如图则,所以,解得,所以,由,得,解得.故答案为:【点睛】本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题.16、【解析】连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;【解析】(1)推导出,由是的中点,能证明是
14、有中点(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面【详解】证明:(1)在三棱锥中,平面,平面平面,平面,在中,是的中点,是有中点(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,平面,平面,平面平面【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题18、(1)(2)(3)为定值【解析】试题分析:(1)利用待定系数法可得,椭圆方程为;(2)我们要知道=的条件应用,在于直线交椭圆两交点M,N的横坐标为,这样代入椭圆方程,容易得到,从而解得;(3
15、) 需讨论斜率是否存在一方面斜率不存在即=时,由(2)得;另一方面,当斜率存在即时,可设直线的斜率为,得直线MN:,联立直线与椭圆方程,利用韦达定理和焦半径公式,就能得到,所以为定值,与直线的倾斜角的大小无关试题解析:(1),得:,椭圆方程为(2)当时,得:,于是当=时,于是,得到(3)当=时,由(2)知当时,设直线的斜率为,则直线MN:联立椭圆方程有,=+=得综上,为定值,与直线的倾斜角的大小无关考点:(1)待定系数求椭圆方程;(2)椭圆简单的几何性质;(3)直线与圆锥曲线19、(1)详见解析;(2)详见解析.【解析】(1)利用平行四边形的方法,证明平面.(2)通过证明平面,由此证得.【详解
16、】(1)设是中点,连接,由于是中点,所以且,而且,所以与平行且相等,所以四边形是平行四边形,所以,由于平面,平面,所以平面.(2)连接,由于直三棱柱中,而,所以平面,所以,由于,所以.由于四边形是矩形且,所以四边形是正方形,所以,由于,所以平面,所以.【点睛】本小题主要考查线面平行的证明,考查线面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)证明见详解;(2)证明见详解【解析】(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,则对于任意都成立,则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得
17、:等比数列是“数列”. (2)证明:既是“数列”又是“数列”,可得,() (),() 可得:对于任意都成立,即 成等比数列,即成等比数列, 成等比数列, 成等比数列,设,()数列是“数列”时,由()可得: 时,由()可得: ,可得,同理可证成等比数列, 数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.21、();().【解析】()由题意可知:由,求得点坐标,即可求得椭圆的方程;()设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取
18、值范围【详解】解:()根据题意是等腰直角三角形,设由得则代入椭圆方程得椭圆的方程为()根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即 由得或故直线斜率可取值范围是【点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题22、(1)证明见解析 (2) (3)【解析】(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,
19、设,再由,结合,由空间向量垂直的坐标关系求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:底面,以为坐标原点,建立如图所示的空间直角坐标系,点为棱 的中点,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知 所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹角及平面与平面形成的二面角大小,计算量较大,属于中档题.