江苏省无锡市省锡中学实验校2023年中考数学四模试卷含解析.doc

上传人:茅**** 文档编号:88306135 上传时间:2023-04-25 格式:DOC 页数:21 大小:1,014KB
返回 下载 相关 举报
江苏省无锡市省锡中学实验校2023年中考数学四模试卷含解析.doc_第1页
第1页 / 共21页
江苏省无锡市省锡中学实验校2023年中考数学四模试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《江苏省无锡市省锡中学实验校2023年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省无锡市省锡中学实验校2023年中考数学四模试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步)1.01.21.11.41.3天数335712在每天所走的步数这组数据中,众数和中位数分别是()A1.3,1.1B1.3,1.3C1.4,1.4D1.3,1.42如图,在

2、平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数yx的图象被P截得的弦AB的长为4,则a的值是()A4B3C3D3小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()ABCD4二次函数yax2+bx+c(a0)和正比例函数yx的图象如图所示,则方程ax2+(b+ )x+c0(a0)的两根之和()A大于0B等于0C小于0D不能确定5如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,ABG46,则FAE的度数是()A26B44C46D726计算

3、的正确结果是()AB-C1D17如图是二次函数的部分图象,由图象可知不等式的解集是( )ABC且Dx1或x58北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A0.72106平方米B7.2106平方米C72104平方米D7.2105平方米9下列图形是中心对称图形的是( )ABCD10如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为_12如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB

4、8,CD2,则EC的长为_13如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;按此作法进行下去,则的长是_14如图,直线l1l2l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,FAC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为 15计算:()1(5)0_16如图,P是O的直径AB延长线上一点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为

5、_三、解答题(共8题,共72分)17(8分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是 三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由18(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从

6、C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图,不论t如何变化,DEF始终为等边三角形(2)如图过点E作EQAB,交AC于点Q,设AEQ的面积为S,求S与t的函数关系式及t为何值时AEQ的面积最大?求出这个最大值(3)在(2)的条件下,当AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?19(8分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、

7、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1(1)请你完成如下的统计表; AQI05051100101150151200201250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等

8、级为“重度污染”和“严重污染”的天数20(8分)(1)计算:;(2)化简,然后选一个合适的数代入求值21(8分)如图,一次函数y=kx+b的图象与二次函数y=x2+c的图象相交于A(1,2),B(2,n)两点(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=x2+c的图象与y轴相交于点C,连接AC,BC,求ABC的面积22(10分)已知AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长线于F,切点为G,连接AG交CD于K(1)如图1,求证:KEGE;(2)如图2,连接CABG,若FGBACH,求证

9、:CAFE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE,AK,求CN的长23(12分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)24全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲

10、家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数【详解】在这组数据中出现次数最多的是1.1,即众数是1.1要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1故选B【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个

11、数字或中间两个数字的平均数即为所求2、B【解析】试题解析:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=AB=4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选B考点:1垂径定理;2一次函数图象上点的坐标特征;3勾股定理3、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时

12、间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.4、C【解析】设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论【详解】解:设的两根为x1,x2,由二次函数的图象可知, 设方程的两根为m,n,则 .故选C【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键5、A【解析】先根据正五边形的性质求出EAB的度数,再由平行线的性质即可得出结论【详解】解:图中是正五边

13、形EAB108太阳光线互相平行,ABG46,FAE180ABGEAB1804610826故选A【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出EAB.6、D【解析】根据有理数加法的运算方法,求出算式的正确结果是多少即可【详解】原式 故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:同号相加,取相同符号,并把绝对值相加绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1一个数同1相加,仍得这个数7、D【解析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:由

14、图象得:对称轴是x=2,其中一个点的坐标为(1,0),图象与x轴的另一个交点坐标为(1,0)由图象可知:的解集即是y0的解集,x1或x1故选D8、D【解析】试题分析:把一个数记成a10n(1a10,n整数位数少1)的形式,叫做科学记数法此题可记为12105平方米考点:科学记数法9、B【解析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B.考点:中心对称图形.【详解】请在此输入详解!10、B【解析】

15、由折叠的性质得到AE=AB,E=B=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,AD=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中,CF2=CD

16、2+DF2,即x2=42+(6-x)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股定理二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=rl+r2=26+22=16(cm2)故答案为:16点睛:考查学生对三

17、视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查12、【解析】设O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长【详解】连接BE,设O半径为r,则OA=OD=r,OC=r-2,ODAB,ACO=90,AC=BC=AB=4,在RtACO中,由勾股定理得:r2=42+(r-2)2,r=5,AE=2r=10,AE为O的直径,ABE=90,由勾股定理得:BE=6,在RtECB中,EC.故答案是:.【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键13、【解析】【分析】先根据一次函数方程式求出B1点的坐标,再

18、根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2=4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是,故答案为:【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进

19、行解题.14、【解析】试题解析:AH=2,HB=1,AB=AH+BH=3,l1l2l3,考点:平行线分线段成比例15、1【解析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式211,故答案为1【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大16、1【解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3=1故答案是:1.三、解答题(共8题,共72分)17、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)

20、存在 如图,作与关于原点中心对称, 则四边形为平行四边形 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 , , 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为18、(1)证明见解析;(2)当t=3时,AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)【解析】(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ

21、面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;【详解】(1)如图中,C(6,0),BC=6在等边三角形ABC中,AB=BC=AC=6,A=B=C=60,由题意知,当0t6时,AD=BE=CF=t,BD=CE=AF=6t,ADFCFEBED(SAS),EF=DF=DE,DEF是等边三角形,不论t如何变化,DEF始终为等边三角形;(2)如图中,作AHBC于H,则AH=ABsin60=3,SAEC=3(6t)=,EQAB,CEQABC,=()2=,即SCEQ=SABC=9=,SAEQ

22、=SAECSCEQ=(t3)2+,a=0,抛物线开口向下,有最大值,当t=3时,AEQ的面积最大为cm2,(3)如图中,由(2)知,E点为BC的中点,线段EQ为ABC的中位线,当AD为菱形的边时,可得P1(3,0),P3(6,3),当AD为对角线时,P2(0,3),综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3)【点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题19、(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29

23、天【解析】(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例【详解】(1)补全统计表如下:AQI05051100101150151200201250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数16207331(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为36529天【点睛】本题考查了条形统计图的应用与用样本估计总体读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据2

24、0、(1)0;(2),答案不唯一,只要x1,0即可,当x=10时,【解析】(1)根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可;(2)先把括号内通分,再把除法运算化为乘法运算,然后约分,再根据分式有意义的条件把x=10代入计算即可【详解】解:(1)原式=13+2+11=0;(2)原式=由题意可知,x1当x=10时,原式=【点睛】本题考查实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值;分式的化简求值,掌握计算法则正确计算是本题的解题关键21、(1)y=x+1;(2)1x2;(3)3;【解析】(1)根据待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B两

25、点的坐标即可求出使二次函数的值大于一次函数的值的x的取值范围;(3)连接AC、BC,设直线AB交y轴于点D,根据即可求出ABC的面积.【详解】(1)把A(1,2)代入y=x2+c得:1+c=2,解得:c=3,y=x2+3,把B(2,n)代入y=x2+3得:n=1,B(2,1),把A(1,2)、B(2,1)分别代入y=kx+b得 解得: y=x+1;(2)根据图象得:使二次函数的值大于一次函数的值的x的取值范围是1x2;(3)连接AC、BC,设直线AB交y轴于点D,把x=0代入y=x2+3得:y=3,C(0,3),把x=0代入y=x+1得:y=1,D(0,1),CD=31=2,则【点睛】考查待定

26、系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键.22、(1)证明见解析;(2)EAD是等腰三角形证明见解析;(3). 【解析】试题分析:(1)连接OG,则由已知易得OGE=AHK=90,由OG=OA可得AGO=OAG,从而可得KGE=AKH=EKG,这样即可得到KE=GE;(2)设FGB=,由AB是直径可得AGB=90,从而可得KGE=90-,结合GE=KE可得EKG=90-,这样在GKE中可得E=2,由FGB=ACH可得ACH=2,这样可得E=ACH,由此即可得到CAEF;(3)如下图2,作NPAC于P,由(2)可知ACH=E,由此可得sinE=sinACH=,设AH

27、=3a,可得AC=5a,CH=4a,则tanCAH=,由(2)中结论易得CAK=EGK=EKG=AKC,从而可得CK=AC=5a,由此可得HK=a,tanAKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由BHK=BKG=90,可得ABG+HKG=180,结合AKH+GKG=180,ACG=ABG可得ACG=AKH,在RtAPN中,由tanCAH=,可设PN=12b,AP=9b,由tanACG=tanAKH=3可得CP=4b,由此可得AC=AP+CP=5,则可得b=,由此即可在RtCPN中由勾股定理解出CN的长.试题解析:(1)如图1,连接OGEF切O于G,OGEF,A

28、GO+AGE=90,CDAB于H,AHD=90,OAG=AKH=90,OA=OG,AGO=OAG,AGE=AKH,EKG=AKH,EKG=AGE,KE=GE(2)设FGB=,AB是直径,AGB=90,AGE=EKG=90,E=180AGEEKG=2,FGB=ACH,ACH=2,ACH=E,CAFE(3)作NPAC于PACH=E,sinE=sinACH=,设AH=3a,AC=5a,则CH=,tanCAH=,CAFE,CAK=AGE,AGE=AKH,CAK=AKH,AC=CK=5a,HK=CKCH=4a,tanAKH=3,AK=,AK=,a=1AC=5,BHD=AGB=90,BHD+AGB=180

29、,在四边形BGKH中,BHD+HKG+AGB+ABG=360,ABG+HKG=180,AKH+HKG=180,AKH=ABG,ACN=ABG,AKH=ACN,tanAKH=tanACN=3,NPAC于P,APN=CPN=90,在RtAPN中,tanCAH=,设PN=12b,则AP=9b,在RtCPN中,tanACN=3,CP=4b,AC=AP+CP=13b,AC=5,13b=5,b=,CN=23、(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108;(2)2人都是“喜欢乘车”的学生的概率为【解析】(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘

30、车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得【详解】(1)被调查的总人数为2550%50人;则步行的人数为50251510人;如图所示条形图,“骑车”部分所对应的圆心角的度数360108;(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,则有AB、AC、AD、BC、BD、CD这6种等可能的情况,其中2人都是“喜欢乘车”的学生有3种结果,所以2人都是“喜欢乘车”的学生的概率为【点睛】本题考查

31、的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1);(2)【解析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁